欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

基于Gaussian-Hermite 矩的图像局部特征描述与匹配研究

摘 要:图像局部特征描述一直是图像配准与图像检索中极为重要的一部分。本#br# 文深入研究Gaussian-Hermite 矩及其旋转不变矩的性质,根据尺度因子不影响其旋转不变性#br# 的特点,提出基于多尺度Gaussian-Hermite 矩的图像局部特征描述方法,并通过实例与现有#br# 的特征描述方法进行详细比较。实例结果表明,所提出的方法具有更强的特征描述能力。#br# 关 键 词:Gaussian-Hermite 矩;不变矩;特征描述;GHM 描述子   

  • 出版日期:2015-06-30 发布日期:2015-05-05

Local Image Representation and Matching Based on Gaussian-Hermite Moments

Abstract: The description of image local features has been the most important part in image#br# registration and image retrieval. In this paper, Gaussian-Hermite moments are studied and their#br# invariants are derived. Due to that the scale parameter does not affect their rotation invariants, a#br# descriptor based on multi-scale Gaussian-Hermite moments is proposed. Finally, the proposed#br# descriptor is tested in a serial experiments with the state-of-the-art methods, and the experimental#br# results show that the proposed descriptor performs much better than the others.#br# Key words: Gaussian-Hermite moments; moment invariants; feature description; GHM#br# descriptor   

  • Online:2015-06-30 Published:2015-05-05

摘要: 图像局部特征描述一直是图像配准与图像检索中极为重要的一部分。本
文深入研究Gaussian-Hermite 矩及其旋转不变矩的性质,根据尺度因子不影响其旋转不变性
的特点,提出基于多尺度Gaussian-Hermite 矩的图像局部特征描述方法,并通过实例与现有
的特征描述方法进行详细比较。实例结果表明,所提出的方法具有更强的特征描述能力。

关键词: :Gaussian-Hermite 矩, 不变矩, 特征描述, GHM 描述子

Abstract: The description of image local features has been the most important part in image
registration and image retrieval. In this paper, Gaussian-Hermite moments are studied and their
invariants are derived. Due to that the scale parameter does not affect their rotation invariants, a
descriptor based on multi-scale Gaussian-Hermite moments is proposed. Finally, the proposed
descriptor is tested in a serial experiments with the state-of-the-art methods, and the experimental
results show that the proposed descriptor performs much better than the others.

Key words: Gaussian-Hermite moments, moment invariants, feature description, GHM
descriptor