摘 要:图像局部特征描述一直是图像配准与图像检索中极为重要的一部分。本#br# 文深入研究Gaussian-Hermite 矩及其旋转不变矩的性质,根据尺度因子不影响其旋转不变性#br# 的特点,提出基于多尺度Gaussian-Hermite 矩的图像局部特征描述方法,并通过实例与现有#br# 的特征描述方法进行详细比较。实例结果表明,所提出的方法具有更强的特征描述能力。#br# 关 键 词:Gaussian-Hermite 矩;不变矩;特征描述;GHM 描述子
Abstract: The description of image local features has been the most important part in image#br# registration and image retrieval. In this paper, Gaussian-Hermite moments are studied and their#br# invariants are derived. Due to that the scale parameter does not affect their rotation invariants, a#br# descriptor based on multi-scale Gaussian-Hermite moments is proposed. Finally, the proposed#br# descriptor is tested in a serial experiments with the state-of-the-art methods, and the experimental#br# results show that the proposed descriptor performs much better than the others.#br# Key words: Gaussian-Hermite moments; moment invariants; feature description; GHM#br# descriptor
摘要: 图像局部特征描述一直是图像配准与图像检索中极为重要的一部分。本
文深入研究Gaussian-Hermite 矩及其旋转不变矩的性质,根据尺度因子不影响其旋转不变性
的特点,提出基于多尺度Gaussian-Hermite 矩的图像局部特征描述方法,并通过实例与现有
的特征描述方法进行详细比较。实例结果表明,所提出的方法具有更强的特征描述能力。