欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

基于Map Reduce 的快速视频镜头边界检测算法

  

  1. 1. 东莞职业技术学院,广东 东莞 523808;2. 广东工业大学计算机学院,广东 广州 510006
  • 出版日期:2017-02-28 发布日期:2017-02-22
  • 基金资助:
    广东省省级科技计划项目(2014A010103002);2014 年东莞市高等院校、科研机构科技计划一般项目(2014106101035)

Fast Video Shot Boundary Detection Algorithm Based on Map Reduce

  1. 1. Dongguan Polytechnic College, Dongguan Guangdong 523808, China;
    2. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou Guangdong 510006, China
  • Online:2017-02-28 Published:2017-02-22

摘要: 镜头边界检测是视频索引、检索和分析的基础。视频数据量大,镜头边界检测中的
高计算成本是实际应用的一个瓶颈。利用Map Reduce 模型分布式的计算思想,首先将大量的视
频数据处理作业拆分成若干个可独立运行的Map 任务,进行视频的解码和特征提取,然后由若
干个Reduce 任务对特征值进行检测获得最后镜头边界集合。在镜头特征提取时把视频分成31 帧
的小片段,利用带权值的分块的直方图计算视频片段的首尾帧间差,通过自适应阈值筛选出非镜
头切换片段和候选镜头切换片段,对候选镜头切换片段再做进一步检测,提出非相邻帧二次帧差
法对渐变镜头进行检测。实验结果表明,利用Map Reduce 模型和改进的镜头算法在加速镜头边
界检测的同时,还可以取得较好的检测精度。

Abstract: Shot boundary detection is the foundation of video indexing, retrieval and analysis.
However, the huge amount of data and the high computational cost in shot detection becomes a
bottleneck in the practical application. Using the distributed computing of Map Reduce model, a large
number of video data processing operations is splinted into several independent Map tasks for video
decoding and feature extraction. Then the feature value is detected by several Reduce tasks to get the
final shot boundary set. When extracting the features, the video is divided into 31 frames segment,
using the histogram of block with weight to calculate the difference between first frame and last
frame of the video segment. Through the adaptive threshold filtering out the non-boundary segments
and the candidate segments, the further detection has been done for the candidate segments. The twice
frame difference method of non-neighboring frame is proposed for the gradual shot detecting.
Experimental results show that the Map Reduce model and the improved shot detection algorithm is
effective in accelerating the shot detection process, and it can also achieve better detection accuracy.

Key words: shot boundary detection, Map Reduce, histogram