欢迎访问《图学学报》 分享到:

图学学报

• 图像与视频处理 • 上一篇    下一篇

人体运动视频关键帧优化及行为识别

  

  1. 广西民族大学信息科学与工程学院,广西南宁 530006
  • 出版日期:2018-06-30 发布日期:2018-07-10
  • 基金资助:
    广西自然科学基金项目(2015GXNSFAA139311)

Optimization and Behavior Identification of Keyframes in Human Action Video

  1. School of Information Science and Engineering, Guangxi University for Nationalities, Nanning Guangxi 530006, China
  • Online:2018-06-30 Published:2018-07-10

摘要: 在行为识别过程中,提取视频关键帧可以有效减少视频索引的数据量,从而提高
动作识别的准确性和实时性。为提高关键帧的代表性,提出一种关键帧序列优化方法,并在此
基础上进行行为识别。首先根据3D 人体骨架特征利用K-均值聚类算法提取人体运动视频序列
中的关键帧,然后根据关键帧所在序列中的位置进行二次优化以提取最优关键帧,解决了传统
方法中关键帧序列冗余等问题。最后根据最优关键帧利用卷积神经网络(CNN)分类器对行为视
频进行识别。在Florence3D-Action 数据库上的实验结果表明,该方法具有较高的识别率,并且
与传统方法相比大幅度缩短了识别时间。

关键词: 行为识别, 关键帧, K-均值, 卷积神经网络

Abstract: In the course of behavior identification, extracting keyframes from the video can
effectively reduce the amount of video index data, so as to improve the accuracy and real-time
performance of behavior identification. A method for optimizing the keyframe sequence is proposed
to improve the representativeness of keyframes, on which the behavior identification is based. Firstly,
the K-means clustering algorithm is employed to extract keyframes in the human action video
sequence according to 3D human skeleton features. Then, the quadratic optimization is performed in
the light of the location of keyframes to extract the optimal keyframe, and it can reduce the redundancy
of keyframe sequence, compared with traditional ways. Finally, the behavior video is identified by
convolutional neural network (CNN) classifiers in accordance with the optimal keyframe. The
experiment results on the Florence 3D Action dataset indicate that the method has a high identification
rate, and drastically shortens the identification time, compared with the traditional method.

Key words: behavior identification, keyframes, K-means, convolutional neural network