• 专论:第16届媒体智能与大数据计算会议(CIDE & DEA 2019 大连) • 上一篇 下一篇
摘要: 人眼视觉注意机制表明当人眼观察目标时,注意力只会放在少数感兴趣的区域, 而自动忽略视野中大部分不感兴趣的其他区域。研究人类视觉注意机制,并构建有效的服装显 著性预测模型,可在后期用于指导更加逼真有效的服装运动建模,提高模拟效率。为此,对着 装人体运动视频数据进行分析,构造了种类多样的视频样本,并利用眼动技术采集真实人眼的 注视数据,采用高斯卷积生成视频帧的显著图作为训练模型所需的 Ground-truth。在进行视频特 征提取时,结合了底层图像特征、高层语义特征以及运动特征,共同构造特征向量和标签,并 通过支持向量机(SVM)训练得到基于服装视频的显著性预测模型。通过实验验证,该方法的性 能在服装显著性预测时,优于传统的显著性预测算法,具有一定的鲁棒性。