图学学报 ›› 2021, Vol. 42 ›› Issue (5): 719-728.DOI: 10.11996/JG.j.2095-302X.2021050719
摘要: 如何快速准确地识别与评估沥青路面裂缝病害,已成为路面养护和保障道路安全的重要任务之 一。实际采集路面图像中往往存在大量的非裂缝图像,在保证裂缝图像无漏筛的前提下,尽可能提高裂缝图像 的精确率与非裂缝图像的真负例率,则对于降低人工筛选的工作强度,以及后续裂缝自动分割与病害损坏程度 评估具有重要实际意义。故此,提出了一种多级卷积神经网络的沥青路面裂缝图像筛选方法,由训练、微调与 验证三阶段构成,利用微调集获得 softmax 层输入微调增量。为避免裂缝图像召回率增加与精确率下降的问题, 在对比不同卷积神经网络筛除的非裂缝图像异同基础上,采用改进 AlexNet 作为一级筛选网络,VGG16 或 ResNet50 作为二、三级筛选网络的层次化处理模型。对于含噪声及复杂路面图像测试集的实验结果表明,三级 层次化筛选模型能在 100%召回裂缝图像时,达到高的真负例率及准确率。与其他方法的对比实验表明,所提 方法可有效解决沥青路面裂缝图像漏筛问题,且具有更好的检测效果。
中图分类号: