欢迎访问《图学学报》 分享到:

图学学报 ›› 2022, Vol. 43 ›› Issue (2): 263-272.DOI: 10.11996/JG.j.2095-302X.2022020263

• 图像处理与计算机视觉 • 上一篇    下一篇

基于边缘熵和局部 FT 分布的超声图像分割模型

  

  1. 1. 三峡大学计算机与信息学院,湖北 宜昌 443002;
    2. 三峡大学智慧医疗宜昌市重点实验室,湖北 宜昌 443002;
    3. 三峡大学人民医院,湖北 宜昌 443000
  • 出版日期:2022-04-30 发布日期:2022-05-07
  • 基金资助:
    国家自然科学基金项目(61871258,U1703261)

Ultrasound image segmentation model based on edge entropy and local FT distribution

  1. 1. College of Computer and Information Technology, China Three Gorges University, Yichang Hubei 443002, China;
    2. Yichang Key Laboratory of Intelligent Medicine, China Three Gorges University, Yichang Hubei 443002, China;
    3. People’s Hospital of China Three Gorges University, Yichang Hubei 443000, China
  • Online:2022-04-30 Published:2022-05-07
  • Supported by:
    National Natural Science Foundation of China (61871258, U1703261)

摘要: 由于采用高斯和瑞利分布描述超声图像均存在较大偏差,且分割过程缺乏超声图像边缘信息引
导,致使其相应的局部高斯分布拟合(LGDF)模型和局部瑞利分布拟合(LRDF)模型对超声图像分割性能不理想。
针对上述问题,提出了一种边缘熵加权的局部 Fisher-Tippett(FT)分布拟合模型。该模型根据超声图像中目标和
背景在局部区域满足不同的 FT 分布,利用最大后验概率(MAP)准则导出超声图像分割的最小化能量函数。该
能量函数的求解采用水平集方法,且通过在长度正则化项中引入边缘熵构造加权函数,引导活动轮廓更好地捕
获分割目标的弱边缘。通过大量真实超声图像实验验证了提出模型在局部 FT 分布拟合和边缘熵引入 2 方面的
改进均能有效提升分割性能,且在定性和定量对比评价上均优于现有的多种超声图像分割方法。

关键词: 超声图像, 边缘熵, Fisher-Tippett 分布, 活动轮廓, 水平集方法

Abstract: Local Gaussian distribution fitting (LGDF) or local Rayleigh distribution fitting (LRDF) models often give
relatively poor performance on segmenting ultrasound images, due to the large bias in describing ultrasound images
by either Gaussian or Rayleigh distribution, and the lack of guidance for ultrasound images edge information during
image segmentation. To deal with these problems, an edge entropy weighted local Fisher-Tippett (FT) distribution
fitting model was presented in this paper. According to the fact that the object and background in local regions of
ultrasound images meet with different FT distributions, the proposed model adopted maximum a posteriori (MAP)
probability to derive an energy function to be minimized. The energy function was solved by the level set method.
Meanwhile, the edge entropy was included into the length regularization term as a weight function to guide the active
contour to better capture the obscure and weak edges of the object. Extensive experiments on synthetic and real ultrasound images have demonstrated that the proposed model can not only achieve an enhancement for the local FT
distribution fitting and the inclusion of the edge entropy, but also qualitatively and quantitatively outperform many of
the existing methods.

Key words: ultrasound image, edge entropy, Fisher-Tippett distribution, active contour, level set method

中图分类号: