摘要:
Phillips q-Bézier 曲线是一类包含 q-整数的广义 Bézier 曲线。针对二次 Phillips q-Bézier 曲线的曲率单调条件,从代数和几何两方面进行了研究,构造出曲率单调的二次 Phillips q-Bézier 曲线及曲率单调递减的组合二次 Phillips q-Bézier 曲线。首先,通过曲线曲率的坐标表示,探究代数形式的曲率单调条件,定义曲率单调包围圆,给出二次 Phillips q-Bézier 曲线具有单调曲率的几何充要条件。当形状参数 q=1 时,Phillips q-Bézier曲线退化为经典的 Bézier曲线,因此上述曲率单调条件包含经典二次 Bézier曲线的结果。其次,讨论二次 Phillipsq-Bézier 曲线间的 G 2 光滑拼接条件及条件中的各个参数对拼接曲线的影响。再次,对于给定首末控制顶点的曲线,选择合适的中间控制顶点,求得使其具有单调曲率时形状参数的取值范围,构造出曲率单调的单条二次Phillips q-Bézier 曲线。进而,构造出同时满足 G 2 拼接与曲率单调递减的组合二次 Phillips q-Bézier 曲线。最后,利用曲率单调递减的组合二次 Phillips q-Bézier 曲线,构造出具有包含关系的两圆之间的缓和曲线。数值实例显示了组合二次 Phillips q-Bézier 曲线的造型优势和灵活性。
中图分类号:
梁吉娜, 解滨, 韩力文. 曲率单调的组合二次 Phillips q-Bézier 曲线[J]. 图学学报, 2022, 43(3): 443-452.
LIANG Ji-na, XIE Bin, HAN Li-wen. Combinatorial quadratic Phillips q-Bézier curves with monotone curvature[J]. Journal of Graphics, 2022, 43(3): 443-452.