图学学报 ›› 2023, Vol. 44 ›› Issue (1): 146-157.DOI: 10.11996/JG.j.2095-302X.2023010146
收稿日期:
2022-06-20
修回日期:
2022-08-01
出版日期:
2023-10-31
发布日期:
2023-02-16
通讯作者:
陈中贵
作者简介:
王佳栋(1997-),男,硕士研究生。主要研究方向为计算机图形学。E-mail:wjd97zzz@gmail.com
基金资助:
WANG Jia-dong1(), CAO Juan2, CHEN Zhong-gui1(
)
Received:
2022-06-20
Revised:
2022-08-01
Online:
2023-10-31
Published:
2023-02-16
Contact:
CHEN Zhong-gui
About author:
WANG Jia-dong (1997-), master student. His main research interest covers computer graphics. E-mail:wjd97zzz@gmail.com
Supported by:
摘要:
三维模型的骨架提取是计算机图形学中一个重要的研究方向。对于有噪声的点云模型,曲线骨架提取的难点在于保持正确的拓扑结构以及良好的中心性;对于无噪声的点云模型,曲线骨架提取的难点在于对模型细节特征的保留。目前主流的点云骨架提取方法往往无法同时解决这2个难点。算法在最优传输理论的基础之上结合聚类的思想,将点云骨架提取的问题转化为一个最优化问题。首先使用最优传输得到原始点云与采样点云之间的传输计划。然后使用聚类的思想将原始点云进行分割,采样点即成为了簇的中心。接着通过簇与簇之间的调整与合并减少聚类个数,优化聚类结果。最后通过迭代的方式得到粗糙的骨架并使用插点操作进行优化。大量实验结果表明,该算法在有噪声与无噪声的三维点云模型上均能提取出质量良好的曲线骨架并保留模型的特征。
中图分类号:
王佳栋, 曹娟, 陈中贵. 保特征的点云骨架提取算法[J]. 图学学报, 2023, 44(1): 146-157.
WANG Jia-dong, CAO Juan, CHEN Zhong-gui. Feature-preserving skeleton extraction algorithm for point clouds[J]. Journal of Graphics, 2023, 44(1): 146-157.
图2 代价函数对采样点坐标的影响((a)欧氏距离的平方;(b)新的代价函数)
Fig. 2 The effect of the cost function on the coordinates of the sampling point ((a) Euclidean distance squared; (b) New cost function)
图3 簇的调整结果展示((a)簇调整执行前;(b) 2次簇调整后;(c)最终结果)
Fig. 3 Results of cluster adjustment ((a) Before cluster adjustment; (b) After two cluster adjustments; (c) Final result)
图5 簇的合并过程((a)初始聚类,簇都在模型表面上;(b)执行若干次后的聚类结果;(c)腿部形成线状结构时的聚类结果)
Fig. 5 The process of cluster merging ((a) Initial clustering, the clusters are all on the model surface; (b) Clustering results after several executions; (c) Clustering results when the legs form a linear structure)
图6 曲线骨架插点结果展示((a)粗糙曲线骨架;(b)粗细分支插点操作前;(c)粗细分支插点操作后;(d)最终的曲线骨架)
Fig. 6 Results of curve skeleton interpolation ((a) Rough curve skeleton; (b) Thick and thin branch before insertion operation; (c) Thick and thin branch after insertion operation; (d) Final curve skeleton)
模型 | 原始点数 | 描述 |
---|---|---|
Armadillo | 43 408 | 无噪声的犰狳模型 |
Cactus | 14 626 | 无噪声的仙人掌模型 |
G | 26 483 | 有噪声的字母“G”模型 |
Human | 14 522 | 有噪声的人模型 |
表1 算法比较的点云模型
Table 1 Point cloud models for algorithm comparison
模型 | 原始点数 | 描述 |
---|---|---|
Armadillo | 43 408 | 无噪声的犰狳模型 |
Cactus | 14 626 | 无噪声的仙人掌模型 |
G | 26 483 | 有噪声的字母“G”模型 |
Human | 14 522 | 有噪声的人模型 |
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.045 8 | 0.072 7 | 0.087 4 | 0.035 1 |
Cactus | 0.013 9 | 0.023 0 | 0.030 6 | 0.028 7 |
G | 0.145 0 | 0.080 7 | 0.086 6 | 0.029 0 |
Human | 0.079 6 | 0.050 3 | 0.062 5 | 0.044 5 |
表2 单向豪斯多夫距离比较
Table 2 One-sided Hausdorff distance comparison
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.045 8 | 0.072 7 | 0.087 4 | 0.035 1 |
Cactus | 0.013 9 | 0.023 0 | 0.030 6 | 0.028 7 |
G | 0.145 0 | 0.080 7 | 0.086 6 | 0.029 0 |
Human | 0.079 6 | 0.050 3 | 0.062 5 | 0.044 5 |
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.000 171 0 | 0.000 672 0 | 0.001 110 0 | 0.000 094 6 |
Cactus | 0.000 015 3 | 0.000 062 2 | 0.000 175 0 | 0.000 036 7 |
G | 0.003 480 0 | 0.001 330 0 | 0.002 220 0 | 0.000 052 9 |
Human | 0.000 617 0 | 0.000 212 0 | 0.000 542 0 | 0.000 133 0 |
表3 单向倒角距离比较
Table 3 One-sided Chamfer distance comparison
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.000 171 0 | 0.000 672 0 | 0.001 110 0 | 0.000 094 6 |
Cactus | 0.000 015 3 | 0.000 062 2 | 0.000 175 0 | 0.000 036 7 |
G | 0.003 480 0 | 0.001 330 0 | 0.002 220 0 | 0.000 052 9 |
Human | 0.000 617 0 | 0.000 212 0 | 0.000 542 0 | 0.000 133 0 |
图7 不同点云模型的曲线骨架结果图,模型从上到下分别是Armadillo,Cactus,G和Human ((a)网格上的MCS算法,作为参考标准;(b) LBC算法;(c) L1中值算法;(d) MDCS算法;(e)本文算法)
Fig. 7 Curve skeleton results of different point clouds, the models are Armadillo, Cactus, G, Human from top to bottom ((a) MCS algorithm on grid; (b) LBC; (c) L1; (d) MDCS; (e) Ours)
高斯噪声方差 | 单向豪斯多夫距离 | 单向倒角距离 |
---|---|---|
无噪声 | 0.021 5 | 0.000 039 3 |
σ = 0.005 | 0.030 0 | 0.000 071 3 |
σ = 0.01 | 0.038 2 | 0.000 125 0 |
σ = 0.02 | 0.110 0 | 0.001 580 0 |
表4 图9模型对应的定量指标
Table 4 Quantitative indicators of the models in Figure 9
高斯噪声方差 | 单向豪斯多夫距离 | 单向倒角距离 |
---|---|---|
无噪声 | 0.021 5 | 0.000 039 3 |
σ = 0.005 | 0.030 0 | 0.000 071 3 |
σ = 0.01 | 0.038 2 | 0.000 125 0 |
σ = 0.02 | 0.110 0 | 0.001 580 0 |
图10 KNN与DKNN的连边对比((a) KNN的连边结果;(b) DNKK的连边结果)
Fig. 10 The comparison between KNN and DKNN ((a) Edge connection result of KNN; (b) Edge connection result of DKNN)
图11 KNN与DKNN对最终结果的影响((a) KNN的最终结果;(b) DNKK的最终结果)
Fig. 11 The influence of KNN and DKNN on the final result ((a) Final result of KNN; (b) Final result of DKNN)
图12 连边规则对结果的影响((a)基础连边规则的结果;(b)添加了额外规则的结果)
Fig. 12 The effect of edge connection rules on results ((a) The result of the basic edge rule; (b) The result with extra rules added)
步骤 | Cactus | G | Armadillo |
---|---|---|---|
DKNN | 2.815 | 10.339 | 11.024 |
最优传输与坐标更新 | 86.849 | 260.037 | 943.829 |
簇的调整与合并 | 141.372 | 512.974 | 1203.870 |
合计 | 231.036 | 783.350 | 2158.723 |
表5 对于不同模型算法各部分耗时(s)
Table 5 Running time of each part of the algorithm (s)
步骤 | Cactus | G | Armadillo |
---|---|---|---|
DKNN | 2.815 | 10.339 | 11.024 |
最优传输与坐标更新 | 86.849 | 260.037 | 943.829 |
簇的调整与合并 | 141.372 | 512.974 | 1203.870 |
合计 | 231.036 | 783.350 | 2158.723 |
算法 | Cactus | G | Armadillo |
---|---|---|---|
OTC (本文) | 231.036 | 783.3500 | 2158.7230 |
LBC | 68.129 | 1834.4420 | 635.4424 |
L1中值 | 114.545 | 510.6930 | 735.9220 |
MDCS | 98.704 | 175.5040 | 4604.5570 |
表6 本文与其他算法的耗时比较(s)
Table 6 Running time comparison with other algorithms (s)
算法 | Cactus | G | Armadillo |
---|---|---|---|
OTC (本文) | 231.036 | 783.3500 | 2158.7230 |
LBC | 68.129 | 1834.4420 | 635.4424 |
L1中值 | 114.545 | 510.6930 | 735.9220 |
MDCS | 98.704 | 175.5040 | 4604.5570 |
[1] | LOVATO C, CASTELLANI U, GIACHETTI A. Automatic segmentation of scanned human body using curve skeleton analysis[M]//Computer Vision/Computer Graphics Collaboration Techniques. Heidelberg: Springer, 2009: 34-45. |
[2] |
LI J T, LU G D. Skeleton driven animation based on implicit skinning[J]. Computers & Graphics, 2011, 35(5): 945-954.
DOI URL |
[3] | BERGER M, TAGLIASACCHI A, SEVERSKY L, et al. State of the art in surface reconstruction from point clouds[EB/OL]. [2022-02-21].http://diglib.eg.org/handle/10.2312/egst.20141040.161-185. |
[4] | LIN S J, GUO Y H, LIANG Y, et al. 3D model retrieval based on skeleton[C]//2015 IEEE International Conference on Networking, Architecture and Storage (NAS). New York: IEEE Press, 2015: 321-325. |
[5] | OGNIEWICZ R, ILG M. Voronoi skeletons: theory and applications[C]//1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 1992: 63-69. |
[6] | TAGLIASACCHI A, ZHANG H, COHEN-OR D. Curve skeleton extraction from incomplete point cloud[C]//SIGGRAPHʹ09: ACM SIGGRAPH 2008 Papers. New York: ACM, 2009: 1-9. |
[7] | CAO J J, TAGLIASACCHI A, OLSON M, et al. Point cloud skeletons via Laplacian based contraction[C]//2010 Shape Modeling International Conference. New York: IEEE Press, 2010: 187-197. |
[8] | AU O K C, TAI C L, CHU H K, et al. Skeleton extraction by mesh contraction[C]//SIGGRAPHʹ08: ACM SIGGRAPH 2008 Papers. New York: ACM, 2008: 1-10. |
[9] | HUANG H, WU S H, COHEN-OR D, et al. L1-medial skeleton of point cloud[J]. ACM Transactions on Graphics, 2013, 32(4): 1-65. |
[10] |
QIN H X, HAN J, LI N, et al. Mass-driven topology-aware curve skeleton extraction from incomplete point clouds[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2805-2817.
DOI URL |
[11] |
AGUEH M, CARLIER G. Barycenters in the wasserstein space[J]. SIAM Journal on Mathematical Analysis, 2011, 43(2): 904-924.
DOI URL |
[12] |
JIANG A L, LIU J, ZHOU J L, et al. Skeleton extraction from point clouds of trees with complex branches via graph contraction[J]. The Visual Computer, 2021, 37(8): 2235-2251.
DOI |
[13] |
ZHANG Y, CHEN L F, TAN F, et al. An improved ℓ1 median model for extracting 3D human body curve-skeleton[J]. Multimedia Tools and Applications, 2021, 80(24): 33547-33571.
DOI |
[14] | MONGE G. Mémoire sur la théorie des déblais et des remblais[EB/OL]. [2022-02-21].https://cir.nii.ac.jp/crid/1572261550791499008. |
[15] | KANTOROVICH L. On the transfer of masses[EB/OL]. [2022-02-21].https://cir.nii.ac.jp/crid/1570009750977811456. |
[16] | AHUJA R. Network flows[EB/OL]. [2022-02-21]. https://dspace.mit.edu/bitstream/handle/1721.1/49424/networkflows00ahuj.pdf. |
[17] | BONNEEL N, VAN DE PANNE M, PARIS S, et al. Displacement interpolation using Lagrangian mass transport[C]//2011 SIGGRAPH Asia Conference. New York: ACM, 2011: 1-12. |
[18] | DAMIAN K, COMM B, GARRET M. The minimum cost flow problem and the network simplex method[D]. Irlande: Université College Gublin, 1991. |
[19] |
VALETTE S, CHASSERY J M. Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening[J]. Computer Graphics Forum, 2004, 23(3SPEC.ISS.): 381-389.
DOI URL |
[20] | NICHOLAS S. Polyscope[EB/OL]. (2021-12-03) [2022-02-21].https://github.com/nmwsharp/polyscope. |
[21] | TAGLIASACCHIA. Point cloud skeletons via laplacian-based contraction[EB/OL]. (2015-01-01) [2022-02-21].https://github.com/taiya/cloudcontr. |
[22] | HUANG H. L1-medial skeleton of point cloud[EB/OL]. (2013-01-01) [2022-02-21].https://vcc.tech/research/2013/L1skeleton. |
[23] | QIN H X. Mass driven curve skeleton[EB/OL]. (2020-01-01) [2022-02-21].https://github.com/Hongxing-CQU/Mass-driven-Curve-Skeleton. |
[24] | TAGLIASACCHI A, ALHASHIM I, OLSON M, et al. Mean curvature skeletons[J]. Eurographics Symposium on Geometry Processing, 2012, 31(5): 1735-1744. |
[25] | GAO X. Triangulated surface mesh skeletonization[EB/OL]. [2022-02-21]. https://doc.cgal.org/5.2.4/Surface_mesh_Skeletonization. |
[26] | VISIONAIR. Aim@Shape[EB/OL]. (2021-08-01) [2022-02-21]. http://visionair.ge.imati.cnr.it/ontologies/shapes. |
[27] | SIDDIQI K. McGill 3D shape benchmark[EB/OL]. ( 2005-12-14) [2022-02-21]. https:/cim.mcgill.ca/-shape/benchMark/. |
[28] | Stanford University Computer Graphics Laboratory. The stanford 3D scanning repository[EB/OL]. (2014-08-19) [2022-02-21].http://graphics.stanford.edu/data/3Dscanrep/. |
[29] | CIGNONI. MeshLab[EB/OL]. (2022-02-01) [2022-02-21].Https://github.com/cnr-isti-vclab/meshlab. |
[1] | 刘妍, 熊游依, 韩妙妙, 杨龙. 几何特征引导的物体点云模型多层级分割[J]. 图学学报, 2023, 44(4): 755-763. |
[2] | 朱磊, 李东彪, 闫星志, 刘向阳, 沈才华. 基于改进Mask R-CNN深度学习算法的隧道裂缝智能检测方法[J]. 图学学报, 2023, 44(1): 177-183. |
[3] | 王春香, 刘 流, 周国勇, 纪康辉. 面向自动修补的圆柱特征孔洞识别[J]. 图学学报, 2021, 42(3): 511-516. |
[4] | 程志全, 叶永凯, 李 宝. 一种基于RANSAC 框架的椭球提取算法[J]. 图学学报, 2012, 33(2): 68-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||