欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (3): 570-578.DOI: 10.11996/JG.j.2095-302X.2023030570

• 计算机图形学与虚拟现实 • 上一篇    下一篇

特征保持的区域分级网格简化算法

朱天晓1(), 闫丰亭1(), 史志才2   

  1. 1.上海工程技术大学电子电气工程学院,上海 201620
    2.上海市信息安全综合管理技术研究重点实验室,上海 200240
  • 收稿日期:2022-08-30 接受日期:2022-11-20 出版日期:2023-06-30 发布日期:2023-06-30
  • 通讯作者: 闫丰亭(1980-),男,讲师,博士。主要研究方向为计算机图形学、WebVR+AI。E-mail:yanfengting2008@163.com
  • 作者简介:

    朱天晓(1998-),男,硕士研究生。主要研究方向为计算机图形学、深度学习。E-mail:shownztx@163.com

  • 基金资助:
    科技创新2030-“新一代人工智能”重大项目(2020AAA0109300);上海市信息安全综合管理技术研究重点实验室开放研究课题基金(AGK2019004);上海市科委高新技术基于多源信息的城市内涝应急设施智慧调度研究项目(21511103704);多维时空变数据驱动的WebVR+AI关键技术研发项目((19) DZ-015)

Regional hierarchical mesh simplification algorithm for feature retention

ZHU Tian-xiao1(), YAN Feng-ting1(), SHI Zhi-cai2   

  1. 1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Shanghai 200240, China
  • Received:2022-08-30 Accepted:2022-11-20 Online:2023-06-30 Published:2023-06-30
  • Contact: YAN Feng-ting (1980-), lecturer, Ph.D. His main research interests cover computer graphics, WebVR+AI. E-mail:yanfengting2008@163.com
  • About author:

    ZHU Tian-xiao (1998-), master student. His main research interests cover computer graphics and deep learning. E-mail:shownztx@163.com

  • Supported by:
    Scientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence(2020AAA0109300);Shanghai Information Security Comprehensive Management Technology Research Key Laboratory Open Research Subject Fund(AGK2019004);Research on Smart Dispatching of Urban Flooding Emergency Facilities Based on Multi-source Information by Shanghai Science and Technology Commission(21511103704);Multi-Dimensional Space-Time Variable Data-Driven WebVR+AI Key Technology Development((19) DZ-015)

摘要:

随着三维建模精度的提升,网格模型的数据量越来越大。为便于存储和计算,需要对网格模型进行简化处理。大多数网格简化算法通常对模型整体设置单一简化率,无法对模型进行不同级别的简化以保留局部特征。针对此类问题,提出了一种特征保持的区域分级网格简化算法(RH-QEM)。首先使用谱聚类算法对网格模型进行分割,并以测地线距离和余弦距离构建核函数;其次构建基于法向量的曲折度量指标,对网格模型的不同区域进行曲折程度度量,据此来设置分级简化率,不同的分割区域对应不同的简化率;最后构建改进的边折叠代价函数,对网格模型的不同区域实现分级简化。在CAD模型与扫描模型上进行实验,实验结果表明,RH-QEM算法简化误差和网格质量均优于3种对比算法,可实现分级简化,并有效保持模型细节特征。

关键词: 网格简化, 特征保持, 谱聚类, 法向量, 二次误差

Abstract:

As the accuracy of 3D modeling continues to improve, the data size of mesh models is increasing proportionally. Thus, simplifying mesh models is essential to facilitate storage and computation. However, most mesh simplification algorithms usually set a single simplification rate for the entire model, and they are unable to retain local features through different levels of simplification. To address this limitation, a hierarchical mesh simplification algorithm called regional hierarchical quadric error metric algorithm (RH-QEM) for local feature retention was proposed. First, the algorithm segmented the mesh model using spectral clustering and constructed the kernel function using geodesic and cosine distances. Then a curvature metric based on normal vectors was constructed to measure the curvature degree of different localities of the mesh model, according to which the graded grid simplification rate was set. Different regions were mapped to different simplification rates. Finally, the algorithm constructed an improved edge folding cost function to achieve graded simplification for different regions of the grid model. Experiments were conducted on CAD models and scanned models. The experimental results demonstrated that the RH-QEM algorithm outperformed three compared algorithms, as it could reduce the simplification errors and enhance the mesh quality, thus realizing graded simplification and effectively maintaining the detailed features of the model.

Key words: mesh simplification, feature retention, spectral clustering, normal vectors, quadratic error

中图分类号: