图学学报 ›› 2023, Vol. 44 ›› Issue (3): 570-578.DOI: 10.11996/JG.j.2095-302X.2023030570
收稿日期:
2022-08-30
接受日期:
2022-11-20
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
闫丰亭(1980-),男,讲师,博士。主要研究方向为计算机图形学、WebVR+AI。E-mail:yanfengting2008@163.com
作者简介:
朱天晓(1998-),男,硕士研究生。主要研究方向为计算机图形学、深度学习。E-mail:shownztx@163.com
基金资助:
ZHU Tian-xiao1(), YAN Feng-ting1(
), SHI Zhi-cai2
Received:
2022-08-30
Accepted:
2022-11-20
Online:
2023-06-30
Published:
2023-06-30
Contact:
YAN Feng-ting (1980-), lecturer, Ph.D. His main research interests cover computer graphics, WebVR+AI. E-mail:yanfengting2008@163.com
About author:
ZHU Tian-xiao (1998-), master student. His main research interests cover computer graphics and deep learning. E-mail:shownztx@163.com
Supported by:
摘要:
随着三维建模精度的提升,网格模型的数据量越来越大。为便于存储和计算,需要对网格模型进行简化处理。大多数网格简化算法通常对模型整体设置单一简化率,无法对模型进行不同级别的简化以保留局部特征。针对此类问题,提出了一种特征保持的区域分级网格简化算法(RH-QEM)。首先使用谱聚类算法对网格模型进行分割,并以测地线距离和余弦距离构建核函数;其次构建基于法向量的曲折度量指标,对网格模型的不同区域进行曲折程度度量,据此来设置分级简化率,不同的分割区域对应不同的简化率;最后构建改进的边折叠代价函数,对网格模型的不同区域实现分级简化。在CAD模型与扫描模型上进行实验,实验结果表明,RH-QEM算法简化误差和网格质量均优于3种对比算法,可实现分级简化,并有效保持模型细节特征。
中图分类号:
朱天晓, 闫丰亭, 史志才. 特征保持的区域分级网格简化算法[J]. 图学学报, 2023, 44(3): 570-578.
ZHU Tian-xiao, YAN Feng-ting, SHI Zhi-cai. Regional hierarchical mesh simplification algorithm for feature retention[J]. Journal of Graphics, 2023, 44(3): 570-578.
曲折度量指标范围 | 分级简化率 |
---|---|
[0.8, 1.0] | 1.0 |
[0.6, 0.8) | 0.9 |
[0.4, 0.6) | 0.4 |
[0.2, 0.4) | 0.2 |
[0.0, 0.2) | 0.1 |
表1 曲折度量指标与分级简化率对应关系
Table 1 Correspondence between the curvature metric and the graded simplification rate
曲折度量指标范围 | 分级简化率 |
---|---|
[0.8, 1.0] | 1.0 |
[0.6, 0.8) | 0.9 |
[0.4, 0.6) | 0.4 |
[0.2, 0.4) | 0.2 |
[0.0, 0.2) | 0.1 |
参数名称 | 参数值 |
---|---|
a | δ=0.01, η=0.1 |
b | δ=0.01, η=0.2 |
c | δ=0.05, η=0.1 |
d | δ=0.05, η=0.2 |
e | δ=0.03, η=0.15 |
表2 分割参数
Table 2 Segmentation parameters
参数名称 | 参数值 |
---|---|
a | δ=0.01, η=0.1 |
b | δ=0.01, η=0.2 |
c | δ=0.05, η=0.1 |
d | δ=0.05, η=0.2 |
e | δ=0.03, η=0.15 |
图6 不同参数的分割结果((a)参数a;(b)参数b;(c)参数c;(d)参数d;(e)参数e)
Fig. 6 Segmentation results for different parameters ((a) Parameter a; (b) Parameter b; (c) Parameter c; (d) Parameter d; (e) Parameter e)
模型 | 面片数 | 分割数目 |
---|---|---|
座椅1A | 3 808 | 8 |
座椅2A | 3 660 | 9 |
桌子1A | 3 250 | 7 |
桌子2A | 8 049 | 7 |
座椅1B | 19 942 | 3 |
座椅2B | 20 089 | 9 |
桌子1B | 20 320 | 7 |
桌子2B | 19 425 | 4 |
表3 模型面片数和分割数目
Table 3 The number of faces and the number of segments
模型 | 面片数 | 分割数目 |
---|---|---|
座椅1A | 3 808 | 8 |
座椅2A | 3 660 | 9 |
桌子1A | 3 250 | 7 |
桌子2A | 8 049 | 7 |
座椅1B | 19 942 | 3 |
座椅2B | 20 089 | 9 |
桌子1B | 20 320 | 7 |
桌子2B | 19 425 | 4 |
图7 谱聚类对模型分割结果((a)座椅1A;(b)座椅2A;(c)桌子1A;(d)桌子2A;(e)座椅1B;(f)座椅2B;(g)桌子1B;(h)桌子2B)
Fig. 7 Segmentation results of spectral clustering ((a) Seat 1A; (b) Seat 2A; (c) Table 1A; (d) Table 2A; (e) Seat 1B; (f) Seat 2B; (g) Table 1B; (h) Table 2B)
图8 座椅1A和桌子1A模型简化80%后的结果((a)初始模型;(b) Melax算法;(c) Web算法;(d) QEM算法;(e) RH-QEM算法)
Fig. 8 Results after 80% simplification of seat 1A and table 1A models ((a) Initial model; (b) Melax; (c) Web; (d) QEM; (e) RH-QEM)
图9 座椅2A和桌子2A模型简化90%后的结果((a)初始模型;(b) Melax算法;(c) Web算法;(d) QEM算法;(e) RH-QEM算法)
Fig. 9 Results after 90% simplification of seat 2A and table 2A models ((a) Initial model; (b) Melax; (c) Web; (d) QEM; (e) RH-QEM)
图10 座椅1B和桌子1B模型简化80%后的结果((a)初始模型;(b) Melax算法;(c) Web算法;(d) QEM算法;(e) RH-QEM算法)
Fig. 10 Results after 80% simplification of seat 1B and table 1B models ((a) Initial model; (b) Melax; (c) Web; (d) QEM; (e) RH-QEM)
图11 座椅2B和桌子2B模型简化90%后的结果((a)初始模型;(b) Melax算法;(c) Web算法;(d) QEM算法;(e) RH-QEM算法)
Fig. 11 Results after 90% simplification of seat 2B and table 2B models ((a) Initial model; (b) Melax; (c) Web; (d) QEM; (e) RH-QEM)
模型 名称 | 简化率 (%) | Melax 算法 | Web 算法 | QEM 算法 | RH-QEM 算法 |
---|---|---|---|---|---|
座椅1A | 80 | 0.032 | 0.045 | 0.027 | 0.026 0 |
桌子1A | 80 | 0.066 | 0.047 | 0.053 | 0.046 0 |
座椅2A | 90 | 0.075 | 0.323 | 0.070 | 0.063 0 |
桌子2A | 90 | 0.038 | 0.023 | 0.015 | 0.016 0 |
座椅1B | 80 | 0.115 | 0.127 | 0.079 | 0.075 0 |
桌子1B | 80 | 0.011 | 0.093 | 0.095 | 0.086 7 |
座椅2B | 90 | 0.119 | 0.110 | 0.108 | 0.089 0 |
桌子2B | 90 | 0.197 | 0.153 | 0.124 | 0.100 0 |
表4 4种简化算法Hausdorff距离对比
Table 4 Comparison of Hausdorff distance of four methods
模型 名称 | 简化率 (%) | Melax 算法 | Web 算法 | QEM 算法 | RH-QEM 算法 |
---|---|---|---|---|---|
座椅1A | 80 | 0.032 | 0.045 | 0.027 | 0.026 0 |
桌子1A | 80 | 0.066 | 0.047 | 0.053 | 0.046 0 |
座椅2A | 90 | 0.075 | 0.323 | 0.070 | 0.063 0 |
桌子2A | 90 | 0.038 | 0.023 | 0.015 | 0.016 0 |
座椅1B | 80 | 0.115 | 0.127 | 0.079 | 0.075 0 |
桌子1B | 80 | 0.011 | 0.093 | 0.095 | 0.086 7 |
座椅2B | 90 | 0.119 | 0.110 | 0.108 | 0.089 0 |
桌子2B | 90 | 0.197 | 0.153 | 0.124 | 0.100 0 |
图12 座椅1A和桌子1A模型简化80%后的误差分布((a) Melax算法;(b) Web算法;(c) QEM算法;(d) RH-QEM算法)
Fig. 12 The error distribution after 80% simplification of seat 1A and table 1A models ((a) Melax; (b) Web; (c) QEM; (d) RH-QEM)
图13 座椅2A和桌子2A模型简化90%后的误差分布((a) Melax算法;(b) Web算法;(c) QEM算法;(d) RH-QEM算法)
Fig. 13 The error distribution after 90% simplification of seat 2A and table 2A models ((a) Melax; (b) Web; (c) QEM; (d) RH-QEM)
图14 座椅1B和桌子1B模型简化80%后的误差分布((a) Melax算法;(b) Web算法;(c) QEM算法;(d) RH-QEM算法)
Fig. 14 The error distribution after 80% simplification of seat 1B and table 1B models ((a) Melax; (b) Web; (c) QEM; (d) RH-QEM)
图15 座椅2B和桌子2B模型简化90%后的误差分布((a) Melax算法;(b) Web算法;(c) QEM算法;(d) RH-QEM算法)
Fig. 15 The error distribution after 90% simplification of seat 2B and table 2B models ((a) Melax; (b) Web; (c) QEM; (d) RH-QEM)
[1] | 林莹莹, 蔡睿凡, 朱雨真, 等. 基于Leap Motion的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65. |
LIN Y Y, CAI R F, ZHU Y Z, et al. Virtual reality pottery modeling system based on leap motion[J]. Journal of Graphics, 2020, 41(1): 57-65. (in Chinese) | |
[2] | 李柯, 张乾, 贾金原. 云边页协同的WebBIM大场景多粒度兴趣加载调度算法[J]. 计算机辅助设计与图形学学报, 2021, 33(9): 1388-1397. |
LI K, ZHANG Q, JIA J Y. CEB-collaboratively multi-granularity interest scheduling algorithm for loading large WebBIM scene[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(9): 1388-1397. (in Chinese) | |
[3] |
LYU W, WU W, ZHANG L, et al. Laplacian-based 3D mesh simplification with feature preservation[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2019, 10(2): 1950002.
DOI URL |
[4] | YI R, LIU Y J, HE Y. Delaunay mesh simplification with differential evolution[J]. ACM Transactions on Graphics, 2018, 37(6): 263. |
[5] |
LIU X P, et al. Generating sparse self-supporting wireframe models for 3D printing using mesh simplification[J]. Graphical Models, 2018, 98: 14-23.
DOI URL |
[6] | 栾婉娜, 刘成明. 基于逆Loop细分的半正则网格简化算法[J]. 图学学报, 2020, 41(6): 980-986. |
LUAN W N, LIU C M. A semi-regular mesh simplification algorithm based on inverse Loop subdivision[J]. Journal of Graphics, 2020, 41(6): 980-986. (in Chinese) | |
[7] | GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics[C]// The 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997: 209-216. |
[8] |
车力, 唐德军, 李世民, 等. 一种视觉特征保持的网格模型简化方法[J]. 系统仿真学报, 2019, 31(11): 2247-2254.
DOI |
CHE L, TANG D J, LI S M, et al. A mesh model simplification method based on visual feature preservation[J]. Journal of System Simulation, 2019, 31(11): 2247-2254. (in Chinese)
DOI |
|
[9] |
褚苏荣, 牛之贤, 宋春花, 等. 面向移动端的渐进网格简化算法[J]. 计算机应用, 2020, 40(3): 806-811.
DOI |
CHU S R, NIU Z X, SONG C H, et al. Progressive mesh simplification algorithm for mobile devices[J]. Journal of Computer Applications, 2020, 40(3): 806-811. (in Chinese)
DOI |
|
[10] | 杨煜, 冼楚华, 李桂清. 结合局部区域特征的自适应简化率网格简化算法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 857-864. |
YANG Y, XIAN C H, LI G Q. Mesh simplification with adaptive simplified ratio based on local region features[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 857-864. (in Chinese) | |
[11] | NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]// The 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. New York: ACM, 2001: 849-856. |
[12] | LIU R, ZHANG H. Segmentation of 3D meshes through spectral clustering[C]// The 12th Pacific Conference on Computer Graphics and Applications. New York: IEEE Press, 2004: 298-305. |
[13] | 梁楚萍, 印杰, 伍静, 等. 三维网格分割中聚类分析技术综述[J]. 计算机辅助设计与图形学学报, 2020, 32(4): 680-692. |
LIANG C P, YIN J, WU J, et al. A survey of 3D mesh segmentation based on clustering analysis[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(4): 680-692. (in Chinese) | |
[14] | 赵俊莉, 辛士庆, 刘永进, 等. 网格模型上的离散测地线[J]. 中国科学: 信息科学, 2015, 45(3): 313-335. |
ZHAO J L, XIN S Q, LIU Y J, et al. A survey on the computing of geodesic distances on meshes[J]. Scientia Sinica Informationis, 2015, 45(3): 313-335. (in Chinese)
DOI URL |
|
[15] |
LI M L. Feature-preserving 3D mesh simplification for urban buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 135-150.
DOI URL |
[16] |
FU H, JIA R F, GAO L, et al. 3D-FUTURE: 3D furniture shape with TextURE[J]. International Journal of Computer Vision, 2021, 129(12): 3313-3337.
DOI |
[17] | CHOI S, ZHOU Q Y, MILLER S, et al. A large dataset of object scans[EB/OL]. (2016-05-05) [2022-08-30]. https://arxiv.org/abs/1602.02481. |
[18] | MELAX S. A simple, fast, and effective polygon reduction algorithm[EB/OL]. [2022-08-17]. https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_November_1998.pdf. |
[19] | 齐洪方, 汪耀. 面向Web的机械产品三维模型简化算法研究[J]. 计算机仿真, 2021, 38(11): 280-283, 289. |
QI H F, WANG Y. Research of web-oriented simplifying mechanical productsʹs 3D model[J]. Computer Simulation, 2021, 38(11): 280-283, 289. (in Chinese) | |
[20] |
CIGNONI P, ROCCHINI C, SCOPIGNO R. Metro: measuring error on simplified surfaces[J]. Computer Graphics Forum, 1998, 17(2): 167-174.
DOI URL |
[21] | 段黎明, 邵辉, 李中明, 等. 高效率的三角网格模型保特征简化方法[J]. 光学精密工程, 2017, 25(2): 460-468. |
DUAN L M, SHAO H, LI Z M, et al. Simplification method for feature preserving of efficient triangular mesh model[J]. Optics and Precision Engineering, 2017, 25(2): 460-468. (in Chinese)
DOI URL |
|
[22] |
LIANG Y Q, HE F Z, ZENG X T. 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution[J]. Integrated Computer-Aided Engineering, 2020, 27(4): 417-435.
DOI URL |
[1] | 岳明宇 , 高希峰 , 毕重科 . 三维建筑模型的低模网格生成[J]. 图学学报, 2023, 44(4): 764-774. |
[2] | 栾婉娜, 刘成明. 基于逆 Loop 细分的半正则网格简化算法 [J]. 图学学报, 2020, 41(6): 980-986. |
[3] | 唐科威, 穆梦娇, 李缙红, 张 杰, 姜 伟, 彭兴璇. 基于快速凸无穷范数极小化的 大量子空间的子空间分割[J]. 图学学报, 2020, 41(6): 954-961. |
[4] | 苏 鹏 1, 尹梦晓 1,2, 王宇攀 3, 韩艳茹 1, 杨 锋 1,2, 李桂清 3 . 基于变形图的谱姿态迁移[J]. 图学学报, 2019, 40(2): 282-289. |
[5] | 陈 媛 1, 赵凌君 1, 匡纲要 1, 赵力文 2 . 基于边缘强度特征和线性谱聚类的 SAR 图像超像素生成方法[J]. 图学学报, 2018, 39(6): 1022-1027. |
[6] | 郭思怡, 陈永锋. 建筑运维阶段信息模型的轻量化方法[J]. 图学学报, 2018, 39(1): 123-128. |
[7] | 魏 宁, 徐婷婷, 高开源, 董方敏. 基于Voronoi 极点特征值显著度加权的网格简化算法[J]. 图学学报, 2017, 38(3): 314-319. |
[8] | 杨大光, 胡维多, 常 波, 魏 青. 视觉特征保持的网格模型简化算法[J]. 图学学报, 2013, 34(4): 35-40. |
[9] | 范 然, 金小刚. 大规模点云选择及精简[J]. 图学学报, 2013, 34(3): 12-19. |
[10] | 李 旭, 周 卓, 时艳茹, 尹鹏举. 基于二次误差测度的车身网格简化算法研究[J]. 图学学报, 2010, 31(4): 7-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||