[1] |
NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: real-time dense surface mapping and tracking[C]// 2011 10th IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2011: 127-136.
|
[2] |
CAO Y P, KOBBELT L, HU S M. Real-time high-accuracy three-dimensional reconstruction with consumer RGB-D cameras[J]. ACM Transactions on Graphics, 37(5): 171:1-171:16.
|
[3] |
DAI A, NIEßNER M, ZOLLHÖFER M, et al. BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics, 36(3): 24:1-24:18.
|
[4] |
包永堂, 周鹏飞, 齐越. 面向单幅图像的逼真3D人脸重建方法[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1850-1858.
|
|
BAO Y T, ZHOU P F, QI Y. Realistic 3D face reconstruction method for single image[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(12): 1850-1858 (in Chinese).
|
[5] |
LEMPITSKY V, IVANOV D. Seamless mosaicing of image-based texture maps[C]// 2007 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2007: 1-6.
|
[6] |
GAL R, WEXLER Y, OFEK E, et al. Seamless montage for texturing models[J]. Computer Graphics Forum, 2010, 29(2): 479-486.
DOI
URL
|
[7] |
WAECHTER M, MOEHRLE N, GOESELE M. Let there be color! large-scale texturing of 3D reconstructions[M]// Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 836-850.
|
[8] |
FU Y P, YAN Q G, YANG L, et al. Texture mapping for 3D reconstruction with RGB-D sensor[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4645-4653.
|
[9] |
FU Y P, YAN Q G, LIAO J, et al. Seamless texture optimization for RGB-D reconstruction[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(3): 1845-1859.
DOI
URL
|
[10] |
GUO J, ZHOU Z J, WANG L M. Single image highlight removal with a sparse and low-rank reflection model[C]// Computer Vision - ECCV 2018. Cham: Springer, 2018: 282-298.
|
[11] |
YAMAMOTO T, NAKAZAWA A. General improvement method of specular component separation using high-emphasis filter and similarity function[J]. ITE Transactions on Media Technology and Applications, 2019, 7(2): 92-102.
DOI
URL
|
[12] |
BERNARDINI F, MARTIN I M, RUSHMEIER H. High-quality texture reconstruction from multiple scans[J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(4): 318-332.
DOI
URL
|
[13] |
CALLIERI M, CIGNONI P, CORSINI M, et al. Masked photo blending: mapping dense photographic data set on high-resolution sampled 3D models[J]. Computers & Graphics, 2008, 32(4): 464-473.
DOI
URL
|
[14] |
TOTZ J, CHUNG A J, YANG G Z. Patient-specific texture blending on surfaces of arbitrary topology[EB/OL]. [2023-05-24]. https://www.doc.ic.ac.uk/amiarcs/proceedings2009/AMI-ARCS2009_proceedings.pdf.
|
[15] |
ZHOU Q Y, KOLTUN V. Color map optimization for 3D reconstruction with consumer depth cameras[J]. ACM Transactions on Graphics, 33(4): 155:1-155:10.
|
[16] |
BI S, KALANTARI N K, RAMAMOORTHI R. Patch-based optimization for image-based texture mapping[J]. ACM Transactions on Graphics, 36(4): 106:1-106:11.
|
[17] |
MAIER R, KIM K, CREMERS D, et al. Intrinsic3D: high-quality 3D reconstruction by joint appearance and geometry optimization with spatially-varying lighting[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 3133-3141.
|
[18] |
PRADA F, KAZHDAN M, CHUANG M, et al. Gradient- domain processing within a texture atlas[J]. ACM Transactions on Graphics, 37(4): 154:1-154:14.
|
[19] |
KIM J, KIM H, PARK J, et al. Global texture mapping for dynamic objects[J]. Computer Graphics Forum, 2019, 38(7): 697-705.
DOI
|
[20] |
COELHO D, DAL'COL L, MADEIRA T, et al. A robust 3D-based color correction approach for texture mapping applications[J]. Sensors, 2022, 22(5): 1730.
DOI
URL
|
[21] |
DAL'COL L, COELHO D, MADEIRA T, et al. A sequential color correction approach for texture mapping of 3D meshes[J]. Sensors, 2023, 23(2): 607.
DOI
URL
|
[22] |
LIU X Q, LI J T, LU G D. Generating high-fidelity texture in RGB-D reconstruction using patches density regularization[J]. Computer-Aided Design, 2023, 160: 103516.
DOI
URL
|
[23] |
HUANG J W, THIES J, DAI A, et al. Adversarial texture optimization from RGB-D scans[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1556-1565.
|
[24] |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision. Cham: Springer, 2020: 405-421.
|
[25] |
MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 102:1-102:15.
|
[26] |
TAN R T, IKEUCHI K. Separating reflection components of textured surfaces using a single image[M]// Digitally Archiving Cultural Objects. Boston: Springer, 2008: 353-384.
|
[27] |
FU Y P, YAN Q G, LIAO J, et al. Joint texture and geometry optimization for RGB-D reconstruction[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5949-5958.
|
[28] |
SHAFER S A. Using color to separate reflection components[J]. Color Research & Application, 1985, 10(4): 210-218.
|
[29] |
PÉREZ P, GANGNET M, BLAKE A. Poisson image editing[J]. ACM Transactions on Graphics, 22(3): 313-318.
DOI
URL
|