图学学报 ›› 2024, Vol. 45 ›› Issue (4): 804-813.DOI: 10.11996/JG.j.2095-302X.2024040804
收稿日期:
2024-01-18
接受日期:
2024-04-17
出版日期:
2024-08-31
发布日期:
2024-09-03
通讯作者:
曹力(1982-),男,副教授,博士。主要研究方向为计算机辅助设计与计算几何。E-mail:lcao@hfut.edu.cn第一作者:
龚辰晨(1999-),女,硕士研究生。主要研究方向为数字图像处理。E-mail:gongchenchen7@163.com
基金资助:
GONG Chenchen1(), CAO Li1,2(
), ZHANG Tengteng1, WU Yize1
Received:
2024-01-18
Accepted:
2024-04-17
Published:
2024-08-31
Online:
2024-09-03
Contact:
CAO Li (1982-), associate professor, Ph.D. His main research interests cover computer aided design and computational geometry. E-mail:lcao@hfut.edu.cnFirst author:
GONG Chenchen (1999-), master student. Her main research interest covers digital image processing. E-mail:gongchenchen7@163.com
Supported by:
摘要:
建筑彩绘是绘制在木构建筑上的精美图案。在古建筑进行数字化展示时,通用处理方法是以网格模型加单张纹理的模式进行绘制。由于单张纹理贴图分辨率有限,无法展示所有细节,且常见的纹理为位图格式,使用多张高分辨率贴图会导致显存占用过大,致使数据交换效率变低。为解决上述难题,提出了一种高质量贴图重构方法。利用彩绘图案的自相似性和对称性,提取彩绘纹样最小不重复单元及版式信息。使用矢量数据表示最小图元并构建纹样素材库。在编辑三维模型的彩绘纹案时,通过复用图元并配置相应变换参数编码生成描述性文件,用以完成彩绘内容的渲染。实验结果表明,该方法有效减少了重复信息的存储,且提供更为清晰的细节,更好地进行数字化展示。
中图分类号:
龚辰晨, 曹力, 张腾腾, 吴奕泽. 面向建筑彩绘纹样的高质量贴图重构方法[J]. 图学学报, 2024, 45(4): 804-813.
GONG Chenchen, CAO Li, ZHANG Tengteng, WU Yize. High-quality texture reconstruction method for architectural painted patterns[J]. Journal of Graphics, 2024, 45(4): 804-813.
图9 变换信息及纹样线稿((a)变换信息;(b)矢量格式纹样线稿)
Fig. 9 Transformation information and pattern line draft ((a) Transformation information; (b) Vector format pattern line draft)
图10 素材库((a)通用图元;(b)几何图元;(c)植物图元;(d)自然图元)
Fig. 10 Material library ((a) General primitives; (b) Geometric primitives; (c) Plant primitives; (d) Natural primitives)
图13 根据构件类型分类的彩绘纹样贴图((a),(b)大板类彩绘;(c)小构件类彩绘)
Fig. 13 Painted pattern maps categorized according to component type ((a), (b) Painted on large plates; (c) Painted on small components)
彩绘纹样类型 | SSIM |
---|---|
文字纹 | 0.927 8 |
植物纹 | 0.861 6 |
卷纹 | 0.843 6 |
表1 彩绘纹样贴图与原图的结构相似性
Table 1 Structural similarity between painted pattern maps and original images
彩绘纹样类型 | SSIM |
---|---|
文字纹 | 0.927 8 |
植物纹 | 0.861 6 |
卷纹 | 0.843 6 |
彩绘纹样 类型 | 原始图像 占用空间/KB | 彩绘纹样贴图 占用空间/KB | 压缩率/ % |
---|---|---|---|
文字纹 | 887 | 52 | 5.8 |
植物纹 | 887 | 121 | 13.6 |
卷纹 | 639 | 190 | 29.7 |
表2 彩绘纹样贴图与原图所占空间对比
Table 2 Comparison of the space occupied by the painted pattern map and the original image
彩绘纹样 类型 | 原始图像 占用空间/KB | 彩绘纹样贴图 占用空间/KB | 压缩率/ % |
---|---|---|---|
文字纹 | 887 | 52 | 5.8 |
植物纹 | 887 | 121 | 13.6 |
卷纹 | 639 | 190 | 29.7 |
方法 | 原始数据 大小/MB | 纹理预处理 | 平均渲染 帧率/FPS | |
---|---|---|---|---|
纹理数据/ MB | 减少数据存储 百分比/% | |||
本文 | 132 | 17.16 | 87.0 | 58.7 |
文献[17] | 132 | 49.76 | 62.3 | 51.0 |
文献[28] | 132 | 36.62 | 72.3 | 57.0 |
表3 不同方法对比分析统计
Table 3 Comparative analysis statistics of different methods
方法 | 原始数据 大小/MB | 纹理预处理 | 平均渲染 帧率/FPS | |
---|---|---|---|---|
纹理数据/ MB | 减少数据存储 百分比/% | |||
本文 | 132 | 17.16 | 87.0 | 58.7 |
文献[17] | 132 | 49.76 | 62.3 | 51.0 |
文献[28] | 132 | 36.62 | 72.3 | 57.0 |
图18 本文方法、文献[17]方法不同视距渲染效果((a)本文;(b)文献[17])
Fig. 18 The rendering effect of different viewing distances between the method of this article and the method of Reference 17 ((a) Ours; (b) Reference [17])
[1] | JIANG Y M, YANG S, QIU H N, et al. Text2Human[J]. ACM Transactions on Graphics, 2022, 41(4): 1-11. |
[2] |
吴正存, 吴通, 敦晓荣. 基于可拓语义的澄城刺绣风格迁移设计方法研究[J]. 图学学报, 2023, 44(5): 1041-1049.
DOI |
WU Z C, WU T, DUN X R. Research on design method of Chengcheng embroidery style migration based on extension semantics[J]. Journal of Graphics, 2023, 44(5): 1041-1049 (in Chinese). | |
[3] | 何科雨, 陈中贵. 基于圆堆砌的纹理生成方法[J]. 图学学报, 2022, 43(6): 1114-1123. |
HE K Y, CHEN Z G. Circle packing based texture generation[J]. Journal of Graphics, 2022, 43(6): 1114-1123 (in Chinese).
DOI |
|
[4] | CHAKI J, DEY N. Texture Feature Extraction Techniques for Image Recognition[M]. Singapore: Springer Singapore, 2020: 67-81. |
[5] | SHEN X, YANG J R, WEI C B, et al. DCT-mask: discrete cosine transform mask representation for instance segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 8716-8725. |
[6] | YUAN X D, KORTYLEWSKI A, SUN Y H, et al. Robust instance segmentation through reasoning about multi-object occlusion[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11136-11145. |
[7] | DING H, QIAO S Y, YUILLE A, et al. Deeply shape-guided cascade for instance segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 8274-8284. |
[8] | ZHU H K, CAO J, XIAO Y Y, et al. TCB-spline-based image vectorization[J]. ACM Transactions on Graphics, 2022, 41(3): 1-17. |
[9] | TODO H, KOBAYASHI K, KATSURAGI J, et al. Stroke transfer: example-based synthesis of animatable stroke styles[C]// Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings. New York: ACM, 2022: 1-10. |
[10] | SMITH S. Adaptive scalable texture compression[M]//GPU Pro 360 Guide to Mobile Devices. Boca Raton:Taylor & Francis, CRC Press, 2018: 153-166. |
[11] | NAH J H. QuickETC2: fast ETC2 texture compression using Luma differences[J]. ACM Transactions on Graphics, 2020, 39(6): 270:1-270:10. |
[12] | AKENINE-MÖLLER T, NILSSON J, ANDERSSON M, et al. Texture level of detail strategies for real-time ray tracing[M]// Ray Tracing Gems. Cham: Springer, 2019: 321-345. |
[13] | ZHANG X Z, CHEN K, JOHAN H, et al. SLOD2+WIN: semantics-aware addition and LoD of 3D window details for LoD2 CityGML models with textures[J]. The Visual Computer, 2024, 40(1): 1-19. |
[14] | ZHANG N X, ZHONG Y Z, DIAN S Y. Rethinking unsupervised texture defect detection using PCA[J]. Optics and Lasers in Engineering, 2023, 163: 107470. |
[15] | 姜展, 李梅, 孙振明, 等. 给予着色器的LOD纹理混合与反走样平滑过渡关键技术研究[J]. 北京大学学报: 自然科学版, 2022, 58(1): 113-122. |
JIANG Z, LI M, SUN Z M, et al. Research on key techniques of smoothing transition of LOD texture blending and antialiasing based on Shader[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 113-122 (in Chinese). | |
[16] | FIELDING E. Graphics texture mapping: US10825207[P]. 2020-11-03. |
[17] |
包馨, 周国清, 何宏昌. “分形-视距” (FVD)多分辨率纹理生成及组织方法[J]. 地球信息科学学报, 2021, 23(4): 551-563.
DOI |
BAO X, ZHOU G Q, HE H C. Study on fractal viewing distance(FVD) multi-resolution texture data generation and organization[J]. Journal of Geo-Information Science, 2021, 23(4): 551-563 (in Chinese). | |
[18] | SURESH KUMAR R, MANIMEGALAI P. Near lossless image compression using parallel fractal texture identification[J]. Biomedical Signal Processing and Control, 2020, 58: 101862. |
[19] | BAO X, ZHOU G Q, YUE T, et al. Research on 3d building visualization based on texture simplification and fractal compression[C]// International Conference on Geomatics in the Big Data Era. Hannover: The International Society for Photogrammetry and Remote Sensing, 2020: 179-185. |
[20] | MULLA A, GUNJIKAR N, NAIK R R. Comparison of different image compression techniques[J]. International Journal of Computer Applications, 2013, 70: 7-12. |
[21] |
CHEN X, ZHANG S. Three dimensional range geometry and texture data compression with space-filling curves[J]. Optics Express, 2017, 25(21): 26103-26117.
DOI PMID |
[22] | SAYED Z, UGAIL H, PALMER I, et al. Auto-parameterized shape grammar for constructing Islamic geometric motif-based structures[M]// Transactions on Computational Science XXVIII. Heidelberg: Springer, 2016: 146-162. |
[23] |
赵海英, 王婷婷. 面向设计的装饰纹样基因生成算法研究[J]. 图学学报, 2019, 40(4): 810-815.
DOI |
ZHAO H Y, WANG T T. Research on the design-oriented ornament pattern gene regeneration algorithm[J]. Journal of Graphics, 2019, 40(4): 810-815 (in Chinese). | |
[24] |
赵海英, 解光鹏, 高子惠. 基于数学规则的龟背纹自动生成方法[J]. 北京邮电大学学报, 2022, 45(4): 110-115.
DOI |
ZHAO H Y, XIE G P, GAO Z H. Automatic generation method of turtle back pattern based on mathematical rules[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(4): 110-115 (in Chinese).
DOI |
|
[25] | TIAN G D, YUAN Q N, HU T, et al. Auto-generation system based on fractal geometry for batik pattern design[J]. Applied Sciences, 2019, 9(11): 2383. |
[26] | 李华飙, 侯小刚, 王婷婷, 等. 基于规则学习的传统纹样统一生成模式研究[J]. 浙江大学学报: 理学版, 2020, 47(6): 669-676, 680. |
LI H B, HOU X G, WANG T T, et al. An unified generation scheme of traditional patterns based on rule learning[J]. Journal of Zhejiang University: Science Edition, 2020, 47(6): 669-676, 680 (in Chinese). | |
[27] | SHI Q N, AN J C, GAGNON K K, et al. Image edge detection based on the canny edge and the ant colony optimization algorithm[C]// 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. New York: IEEE Press, 2019: 1-6. |
[28] | REDDY P, GUERRERO P, MITRA N J. Search for concepts: Discovering visual concepts using direct optimization[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2210.14808. |
[1] | 柳有权 1, 张彩荣 1, 马 雷 2,3, 石 剑 4, 孙 昭 1, 陈彦云 3 . 一种基于图像结构特征的实时点画生成算法[J]. 图学学报, 2019, 40(3): 435-440. |
[2] | 邵绪强 1, 刘 艳 2, 王新颖 1. 一种拉格朗日粒子流体的高效表面重建方法[J]. 图学学报, 2016, 37(5): 607-613. |
[3] | 钱文华, 徐 丹, 普园媛, 徐 瑾, 何 磊, 廖东伟. 非真实感绘制漫画艺术效果的研究与实现[J]. 图学学报, 2016, 37(2): 218-223. |
[4] | 喻扬涛, 徐 丹. 蜡染冰纹生成算法研究[J]. 图学学报, 2015, 36(2): 159-165. |
[5] | 李 倩, 解婉誉, 李玉润, 普园媛, 徐 丹. 云南绝版套刻版画的数字模拟合成技术研究[J]. 图学学报, 2013, 34(3): 120-125. |
[6] | 卢丽稳, 普园媛, 刘玉清, 钱文华, 徐 丹. 云南重彩画人脸肖像生成算法[J]. 图学学报, 2013, 34(3): 126-133. |
[7] | 钱小燕. 基于图像的非真实感艺术绘制技术综述[J]. 图学学报, 2010, 31(1): 6-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||