欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (1): 170-178.DOI: 10.11996/JG.j.2095-302X.2025010170

• 计算机图形学与虚拟现实 • 上一篇    下一篇

新型巡检车辆侧向行驶稳定性的鲁棒性分析与控制

倪利伟1,2(), 吴量2, 姜宏生1, 邢彪2   

  1. 1.河南工程学院机械工程学院,郑州 河南 451191
    2.吉林大学汽车仿真与控制国家重点实验室,吉林 长春 130012
  • 收稿日期:2024-05-21 接受日期:2024-10-23 出版日期:2025-02-28 发布日期:2025-02-14
  • 第一作者:倪利伟(1987-),男,讲师,博士。主要研究方向为车辆行驶稳定性控制。E-mail:hauenlw@haue.edu.cn
  • 基金资助:
    国家自然科学基金(51705185);吉林大学汽车仿真与控制国家重点实验室开放基金(20210221);吉林省自然科学基金(YDZJ202101ZVTS190)

Robustness analysis and control of lateral driving stability of novel inspection vehicle

NI Liwei1,2(), WU Liang2, JIANG Hongsheng1, XING Biao2   

  1. 1. College of Mechanical Engineering, Henan University of Engineering, Zhengzhou Henan 451191, China
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun Jilin 130012, China
  • Received:2024-05-21 Accepted:2024-10-23 Published:2025-02-28 Online:2025-02-14
  • First author:NI Liwei (1987-), lecturer, Ph.D. His main research interests cover the vehicle driving stability control. E-mail:hauenlw@haue.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51705185);Open Foundation of State Key Laboratory of Automotive Simulation and Control(20210221);Natural Science Foundation of Jilin Province(YDZJ202101ZVTS190)

摘要:

传统车辆在面对不确定干扰时,车辆质心侧偏角与横摆角速度易偏离理想值,导致整车侧向行驶稳定性恶化。为提高车辆在不确定干扰下的侧向行驶稳定性与鲁棒性。首先基于一体化动力学模型、序列二次规划法以及自适应滑膜控制算法(ASMC)搭建了整车行驶稳定性分层协同控制策略(HCC)。其次基于线控转向、线控驱动以及线控制动设计了一款新型四轮转向-分布式驱动巡检车辆(FSDDIV)。最后基于Simulink与Carsim进行不确定干扰下的车辆侧向行驶稳定性联合仿真分析。结果表明,相比于常用的平均分配法(ADM),该HCC控制策略的控制效果表现更佳,在面对不确定行驶工况、不确定行驶车速以及系统参数不确定性时,车辆质心侧偏角与横摆角速度的最大偏离误差改善比例分别达到了75.5%与84.8%,72.8%与86.0%,71.0%与83.8%,且整体上优于同类的分层线性二次型最优控制理论(HLQR)。该控制策略对不确定干扰表现不敏感,呈现较好的鲁棒性与稳定的控制效果,能够适应多工况的巡检任务。

关键词: 巡检车辆, 四轮转向-分布式驱动, 侧向稳定性, 分层协同控制策略, 鲁棒性分析

Abstract:

Traditional vehicles often experience deviations in sideslip angle and yaw rate from their ideal values when subjected to uncertain disturbances, resulting in a degradation of the lateral driving stability of the vehicle. To enhance the lateral driving stability and robustness of vehicles under such conditions, firstly, a hierarchical collaborative control strategy (HCC) with strong robustness was proposed based on integrated dynamic model, the sequential quadratic programming method, and the adaptive sliding mode control algorithm (ASMC). Secondly, a novel four-wheel steering and distributed drive inspection vehicle (FSDDIV) was designed based on steering-by-wire, drive-by-wire, and brake-by-wire. Finally, the lateral driving stability analysis based on Simulink and Carsim was carried out. The results demonstrated that compared with ADM control strategy, the proposed HCC control strategy exhibited better control performance. When faced different driving conditions, different driving speeds, and system parameters uncertainty, the improvement ratio of maximum deviation errors of the sideslip angle and yaw rate reached 75.5% and 84.8%, 72.8% and 86.0%, and 71.0% and 83.8%, respectively. In addition, the HCC strategy exhibited better overall performance compared to the similar HLQR control theory. In summary, the proposed control strategy is insensitive to uncertain disturbances, delivering robust and stable control effects, making it well-suited for inspection tasks under different working conditions.

Key words: inspection vehicle, four wheel steering and distributed drive, lateral stability, hierarchical collaborative control, robustness analysis

中图分类号: