欢迎访问《图学学报》 分享到:

图学学报

• 数字化设计 • 上一篇    下一篇

基于中弧线-厚度函数的翼型形状解析构造法

  

  • 出版日期:2013-02-27 发布日期:2015-06-10

Analytic expression method of airfoil profile shape based on a mean camber and thickness function

  • Online:2013-02-27 Published:2015-06-10

摘要: :复杂翼型几何形状的解析表达对叶片的优化设计有重要的意义,文章研究
了用解析函数构造复杂翼型形状的方法。通过对儒科夫斯基翼型函数的简化,得到用中弧线
-厚度函数表示翼型型线的解析表达式,对式中的相关系数和指数进行重新定义和变换,构
造出包括儒科夫斯基翼型的一般翼型型线的解析表达式;通过进一步分离上、下型线并进行
重新组合的方法可构造出更复杂翼型的形状;再通过增加一个独立的厚度函数项的方法,可
构造出具有光滑尾缘形状的翼型。研究表明,复杂翼型的几何形状可通过有限个参数的解析
函数表达,这些参数不仅具有明确的几何意义,而且使用方便,便于调整翼型的局部形状。
文中给出了用翼型、弦长和扭角函数构造风力机叶片解析函数的应用示例。

关键词: 翼型, 翼型型线, 中弧线函数, 厚度函数, 解析构造法

Abstract: It is important that the geometric shape of a complex airfoil contour be expressed
by an analytic formula. In this paper, the method to construct airfoil contour by analytic functions
is discussed. Joukowsky airfoil contour function is simplified to a straightforward expression with
mean camber function and thickness function. Many airfoil contours can be constructed by
redefining and transforming the coefficients and indexes in the expansion, and more complex
airfoil contours can be obtained through separating and resetting the upper and lower contours.
Also, the contour function of any airfoil with smooth trailing edge is obtained by adding an
independent thickness function. It is shown that a complex airfoil contour can be expressed by an
analytic function with limited parameters which have clear geometric meaning, and can be used to
adjust the local shape easily. As an example of application, the paper also gives a method to
construct analytic function of blade with an airfoil contour, a chord and a twist functions.

Key words: airfoil profile, airfoil contour, mean camber function, thickness function;
analytic construction method