[1] |
KIM J, LEE J Y, LEE E. Risk factors for newly acquired pressure ulcer and the impact of nurse staffing on pressure ulcer incidence[J]. Journal of Nursing Management, 2022, 30(5): 1-9.
|
[2] |
ASANO Y, TAKAHASHI M. Development of a microwave bedsore detection method using wavelet transforms[C]// 2022 IEEE International Workshop on Electromagnetics:Applications and Student Innovation Competition (iWEM). New York: IEEE Press, 2022: 130-131.
|
[3] |
MANSOURI M, KRISHNAN G, MCDONAGH D C, et al. Review of assistive devices for the prevention of pressure ulcers: an engineering perspective[J]. Disability and Rehabilitation: Assistive Technology, 2024, 19(4): 1511-1530.
|
[4] |
CHUGO D, FUJITA K, SAKAIDA Y, et al. Depressurization assistance according to a posture of a seated patient[C]// 2011 4th International Conference on Human System Interactions, HSI 2011. New York: IEEE Press, 2011: 287-292.
|
[5] |
TAKASHIMA A, MISAKI A, TAKASUGI S I, et al. Characteristic analysis of an air cell for active air mattress of prevention for pressure ulcer[J]. Advanced Robotics, 2014, 28(7): 497-504.
|
[6] |
ZHANG Y, ZOU X F, ZHANG B, et al. A flexible turning and sensing system for pressure ulcers prevention[J]. Electronics, 2021, 10(23): 2971.
|
[7] |
GALER J K, LAFLECHE P, SLOMINSKI P J, et al. Patient turning device for a patient support apparatus: United States, 11246775[P]. 2022-02-15.
|
[8] |
WANG Y L. Device for turning over and transferring the patient: United States, 9248063[P]. 2016-02-02.
|
[9] |
SEON M, LEE Y, MOON C. Medical robotic bed to prevent pressure sores[J]. Applied Sciences, 2021, 11(18): 8459.
|
[10] |
LU G D, QIN Z P, LI G Z, et al. Mechanical kinematics analysis and optimization design of a bionic anti-decubitus multifunctional nursing bed[C]// 2019 Chinese Automation Congress. New York: IEEE Press, 2019: 494-499.
|
[11] |
SHAFI I, FAROOQ M S, DE LA TORRE DÍEZ I, et al. Design and development of smart weight measurement, lateral turning and transfer bedding for unconscious patients in pandemics[J]. Healthcare, 2022, 10(11): 2174.
|
[12] |
MA X P, QIAN B F, ZHANG H H, et al. Research on mechanical structure of the multi-function nursing bed robot[J]. Advanced Materials Research, 2014, 1049-1050: 838-841.
|
[13] |
ANDHARE A B, ONKAR A M. Design and development of multifunctional patient bed with integrated toilet[J]. SN Applied Sciences, 2021, 3(10): 813.
|
[14] |
NAKAMURA T, TSUKAGOSHI H. Soft pneumatic manipulator capable of sliding under the human body and its application to preventing bedsores[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. New York: IEEE Press, 2018: 956-961.
|
[15] |
SU P, ZHANG Y L, LUN Q, et al. Design and load kinematics analysis of rollover rehabilitation mechanism fitting human motion curve[J]. Micromachines, 2022, 13(12): 2064.
|
[16] |
苏鹏, 卢达, 伦庆龙, 等. 基于运动轨迹图形拟合的辅助人体侧翻机构设计研究[J]. 图学学报, 2020, 41(6): 993-1000.
|
|
SU P, LU D, LUN Q L, et al. Design of aided mechanism configuration for human body turning-over based on motion trajectory fitting[J]. Journal of Graphics, 2020, 41(6): 993-1000 (in Chinese).
|
[17] |
卢达, 苏鹏, 季润, 等. 人体仰卧位侧翻的动力学仿真及实验验证[J]. 生物医学工程学杂志, 2019, 36(5): 777-784.
|
|
LU D, SU P, JI R, et al. Dynamic simulation and experimental verification of human body turning over in supine position[J]. Journal of Biomedical Engineering, 2019, 36(5): 777-784 (in Chinese).
|
[18] |
孙桓, 陈作模, 葛文杰. 机械原理[M]. 北京: 高等教育出版社, 2006.
|
|
SUN H, CHEN Z M, GE W J. Theory of machines and mechanisms[M]. Beijing: Higher Education Press, 2006 (in Chinese).
|
[19] |
徐坤, 乔安伟, 丁希仑. 剪叉弯曲折展变胞机构的设计与分析[J]. 机械工程学报, 2020, 56(5): 55-62.
DOI
|
|
XU K, QIAO A W, DING X L. Design and analysis of a scissor-bending deployable and foldable mechanism[J]. Journal of Mechanical Engineering, 2020, 56(5): 55-62 (in Chinese).
DOI
|
[20] |
伦庆龙, 苏鹏, 卢达, 等. 辅助仰卧位侧翻过程压疮易发部位的生物力学建模与实验研究[J]. 中国生物医学工程学报, 2022, 41(3): 310-319.
|
|
LUN Q L, SU P, LU D, et al. Biomechanical modeling and experimental study on the common sites of pressure ulcers in the process of assisted turning over from supine position[J]. Chinese Journal of Biomedical Engineering, 2022, 41(3): 310-319 (in Chinese).
|
[21] |
WU L, CRAWFORD R, ROBERTS J. An analytic approach to converting POE parameters into D-H parameters for serial-link robots[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2174-2179.
|
[22] |
KARAKUŞ R, TANIK E. Transmission angle in compliant four-bar mechanism[J]. International Journal of Mechanics and Materials in Design, 2023, 19(3): 713-727.
|
[23] |
TANIK Ç M, TANIK E, YAZICIOĞLU Y, et al. On the analysis and design of a fully compliant large stroke slider-crank (rocker) mechanism[J]. Mechanical Sciences, 2020, 11(1): 29-38.
|
[24] |
李晓英, 杨林, 王星达, 等. 基于NFBMS创新设计综合模型的上肢康复产品设计研究[J]. 图学学报, 2025, 46(1): 211-220.
DOI
|
|
LI X Y, YANG L, WANG X D, et al. Research on upper limb rehabilitation product design based on NFBMS innovative design synthesis model[J]. Journal of Graphics, 2025, 46(1): 211-220 (in Chinese).
DOI
|
[25] |
HE B, ZHU X R, ZHANG D. Boundary encryption-based Monte Carlo learning method for workspace modeling[J]. Journal of Computing and Information Science in Engineering, 2020, 20(3): 034502.
|
[26] |
苏鹏, 王思锴, 张力, 等. 人体坐立运动的膝关节动力学研究[J]. 生物医学工程学杂志, 2022, 39(5): 982-990.
|
|
SU P, WANG S K, ZHANG L, et al. Dynamics analysis of knee joint during sit-stand movement[J]. Journal of Biomedical Engineering, 2022, 39(5): 982-990 (in Chinese).
|
[27] |
SU P, LUN Q, LU D, et al. Biomechanical changes on the typical sites of pressure ulcers in the process of turning over from supine position: theoretical analysis, simulation, and experiment[J]. Annals of Biomedical Engineering, 2022, 50(6): 654-665.
DOI
PMID
|