欢迎访问《图学学报》 分享到:

图学学报

• 图形学与可视化 • 上一篇    下一篇

大规模点云选择及精简

  

  • 出版日期:2013-06-29 发布日期:2015-06-11

Selection and Reduction Algorithms for Large Point Clouds

  • Online:2013-06-29 Published:2015-06-11

摘要: 点云选择与精简是三维扫描系统中应对背景数据、冗余采样、分布不均匀
等问题的必要后处理步骤。针对定制低成本三维扫描系统的需求,传统方法仍有很多局限性。
这是由于研究领域未提供支持套索UI 接口的点云选择算法;传统点云精简方法侧重曲率自
适应分布,无法保证平坦区域的均衡分布。论文提出一种支持套索UI 接口的点云选择算法,
通过构建套索形状矩形覆盖与点云八叉树剔除大部分点在多边形内的判断;提出一种基于
Poisson-disk 采样的均衡分布的点云精简算法,并以采样点邻域球布尔交运算来定义曲面上
的圆盘半径度量,具有保持尖锐边特征及边界的性质。实验结果表明,论文方法能够较好满
足低成本三维扫描系统中点云删减处理的需求。

关键词: 点云选择, 点云精简, Poisson-disk 采样, 尖锐边特征保持

Abstract: Selection and reduction for large point clouds are the indispensable
post-processing steps to deal with the problem of background data, redundant sampling and
non-uniform distributions. Traditional methods still have many limitations for custom low cost 3D
scanning system. There is no public available point cloud selection algorithm supporting lasso UI
interfaces in research community; traditional point cloud reduction algorithm focuses on adapting
samples to surface curvature without considering balanced distribution in flat regions. This paper
presents a new point cloud selection algorithm with lasso UI interfaces, which avoids most of the
point-in-polygon tests by constructing rectangle covering of the lasso polygon and the octree
encoding of the input point cloud. Based on Poisson-disk sampling, a novel point cloud reduction
approach is proposed, in which the radius of the disk embedded on surface is defined by Boolean
intersection between neighborhood spheres of samples resulting in the property of sharp edge
feature preserving. The experimental results demonstrate that these methods provide satisfactory
results for point cloud removal preprocessing in low cost 3D scanning system.

Key words: point cloud selection, point cloud reduction, Poisson-disk sampling, sharp edge
feature preserving