图学学报
• 几何设计与计算 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 论文提出了一种以Weierstrass-Mandelbrot 分形(简称W-M 分形)与参数 曲面相合成来实现分形曲面的数字化建模的方法。指出了在参数曲面上合成W-M 分形以及 实施弧长参数化计算的必要性;论述了弧长参数化的具体算法,并用此方法实现了W-M 分 形与参数曲面的合成;在此基础上,提出了两向异性分形曲面的一种建模方法,实现了参数 曲面上进行两向异性W-M 分形的插值模拟。
关键词: 分形, 弧长参数化, 参数曲面, 两向异性
Abstract: A method of modeling W-M fractal freeform surfaces by superposing W-M fractals on parametric surfaces is proposed in this work. First, the significance of superposing W-M fractals with parametric curves and surfaces is pointed out; then the importance of utilizing arc-length parameterization for the superposing is described, and followed by our specific algorithm with which the fractal simulation with freeform surfaces is achieved; at the last section, an anisotropic approach for presenting freeform fractal surfaces is developed and with demonstrated graphics simulation.
Key words: fractal, arc-length parameterization, parametric surfaces, anisotropic
刘远东, 王清辉, 刘 林, 熊 巍. 基于弧长参数化的曲面W-M 分形插值[J]. 图学学报.
Liu Yuandong, Wang Qinghui, Liu Lin, Xiong Wei. W-M fractals interpolation with freeform surface based on arc-length parameterization[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2012/V33/I6/59