欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

多彩色空间相关分析的人脸识别算法

  

  • 出版日期:2012-12-31 发布日期:2015-07-29

A fast color face recognition algorithm

  • Online:2012-12-31 Published:2015-07-29

摘要: 人脸识别是当前人工智能和模式识别的研究热点,得到了广泛的关注。基
于对不同色彩空间数据的分析,论文提出了多彩色空间典型相关分析的人脸识别方法。文中
对2 维的Contourlet 变换特性进行了分析和讨论,利用Contourlet 的多尺度,方向性和各向
异性等特点,提出了一种基于Contourlet 变换的彩色人脸识别算法。算法对原图进行
Contourlet 分解,对分解得到的低频和高频图像进行cca 分析。典型相关分析是一种有效的
分析方法,其实际应用十分广泛。低频系数反映图像的轮廓信息,高频系数反映图像的细节
信息,使用cca 充分利用不同频率的信息,使不同色彩空间的不同分辨率图形的相关性达到
最大,得到投影系数,最后,采用决策级最近邻分类器完成人脸识别。在对彩色人脸数据库
AR 的识别实验中,该算法识别率达到98%以上,与传统算法相比,该算法不仅既有良好的
识别结果,而且具有很快的运算速度。

关键词: 彩色人脸识别, contourlet 分解, 典型相关分析, 最近邻分类

Abstract: Face recognition is an active research area in the artificial intelligence, which has
aroused great concern. Multiple color space canonical correlation analysis is proposed based on
different color spaces analysis. This paper analyses and discusses the characteristics of Contourlet
transform, and, by using the contourlet’s advantage of multiscale, directionality and anisotropy,
proposes a novel color face recognition algorithm. First, the source images are transformed into
contourlet domain to get the LP and HP images. Then, canonical correlation analysis (CCA) is
used to recognize the face. CCA is an efficient projection operator, which can analyze different
color spaces to get the biggest correlation. Finally, nearest neighbor classifier is selected to
perform face recognition. Experimental results on color AR face database show that the proposed
algorithm, which achieves recognition accuracy of above 98%, is more effective and faster than
the traditional method.

Key words: color face recognition, contourlet, canonical correlation analysis (CCA), nearest
neighbor classifier