欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

模糊C 均值聚类与多相水平集图割优化相结合的图像分割

  

  • 出版日期:2015-08-28 发布日期:2015-08-04

An Image Segmentation Method by Combining Fuzzy C-Means Clustering with Graph Cuts Optimization for Multiphase Level Set Algorithms

  • Online:2015-08-28 Published:2015-08-04

摘要: 针对在分割多个目标时多相水平集模型对初始轮廓曲线敏感且计算量大的问题,
提出采用模糊C 均值聚类算法将图像进行粗分割,初始化多相水平集函数,使用图割算法分割
出多相结果的方法。该方法能有效减小多相水平集算法对初始轮廓曲线的敏感性,使图割算法
在分割图像时更容易分割出理想的目标轮廓;同时,采用图割算法可使水平集函数很快收敛到
能量最小值,有效减少计算量,提高计算效率。实验表明该方法具有较好地分割效果和较高地
分割效率。

关键词: 模糊C 均值聚类, 图像分割, 图割, 多相水平集

Abstract: Multiphase level set model is sensitive to initial contour curve and has huge computation in
the process of the multiple objectsʹ segmentation. A novel Image segmentation method is presented
for multiphase scenario, which initializes the multiphase level set function by coarse image
segmentation using fuzzy C-means clustering algorithm and applies graph cuts algorithm to acquire
multiphase output image. The method can effectively reduce the sensitivity of the multiphase level set
algorithm to initial contour and is easier to gain the multiphase output image by graph cuts algorithm.
At the same time, the multiphase level set function quickly converge to the minimum energy value
with small amount of calculation and high computational efficiency using the graph cuts algorithm.
The experiments show that this method has better segmentation effect and higher efficiency of image
segmentation.

Key words: fuzzy C-means clustering, image segmentation, graph cuts, multiphase level set