欢迎访问《图学学报》 分享到:

图学学报

• 图像处理与模式识别 • 上一篇    下一篇

基于模拟退火并行遗传算法的Otsu双阈值

  

  • 出版日期:2011-10-28 发布日期:2015-08-12

An Otsu Dual-threshold Value Method Based on Simulated Annealing Parallel Genetic Algorithm for Medical Image Segmentation

  • Online:2011-10-28 Published:2015-08-12

摘要: 模拟退火和并行遗传算法是两种较好的改进进化算法性能的方法。将这两种思想有机地结合起来,利用遗传算法能全局寻优的优势和模拟退火算法的爬山性能,提出了一种基于模拟退火并行遗传算法的Otsu双阈值医学图像分割算法。在该算法中,进化在多个不同的子群中并行进行,利用模拟退火算法的爬山性能,避免单种群进化过程中出现的过早收敛现象,提高整个算法的收敛速度。实验证明,这种新的图像分割算法与并行遗传算法相比,不仅能够对图像进行准确的分割,而且具有更强的精确性和稳定性。其收敛速度明显比并行遗传算法的Otsu双阈值医学图像分割快。

关键词: 医学图像分割, Otsu, 并行遗传算法, 模拟退火

Abstract: Simulated annealing and parallel genetic algorithm are two helpful methods which can improve the performance of evolutionary algorithm. The paper applies the global optimum performance of evolutionary programming and the hill climbing performance of simulated annealing, and proposes an Otsu dual-threshold value method based on simulated annealing parallel genetic algorithm for medical image segmentation. In the algorithm, evolutions of subgroups are performed among subgroups in parallel, and the hill climbing performance of simulated annealing is utilized, so this algorithm avoids premature convergence of alone group evolutionary process and improves its convergence efficiency. Experiments show that this new algorithm can achieve exact image segmentation and is of better accuracy and stability than parallel genetic algorithm, and its convergence speed is faster than the Otsu dual-threshold value method based on parallel genetic algorithm.

Key words: medical image segmentation, Otsu, parallel genetic algorithm, simulated annealing