图学学报
• 几何设计与计算 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: :四心圆法是用四段圆弧拼接成近似椭圆。由于其对称性,取图形的1/4 为研究对象, 利用二分法求解方程组,得出两段圆弧拼接点坐标值;分别用两段圆弧的极径和实际椭圆中相应 的极径进行长度误差分析,列出两段圆弧与椭圆极坐标方程,使用牛顿迭代法,求出圆弧与实际 椭圆的极径长度最大误差值;计算出近似椭圆与实际椭圆面积,求出面积误差值。在编程软件中, 根据所得数学模型编制计算器,计算结果列表对比分析,得出四心圆法作近似椭圆的误差结论。
关键词: :椭圆, 牛顿迭代法, 计算器, 误差分析
Abstract: The four-arcs method uses four arcs joining together similarly into an ellipse. Due to its symmetry, we take a quater graphics as the researching object and solve the equations by using dichotomy. Then we get the splicing point coordinates of the two pieces of circular arc. Then do error analysis with the actual ellipse in the two pieces of circular arc, and list the mathematical equations of the two pieces of circular arc and the ellipse polar. Then solve the actual maximum error value of the ellipse and the two pieces of circular arc with Newton iterative method. After that, figure out the approximate and actual ellipse areas, so as to work out the area error values. With the mathematical model, the calculator software is developed. It is concluded that the error of the approximated ellipse is solved through comparing the analysis list of calculating results.
Key words: ellipse, Newton iterative method, calculator, error analysis
周亚辉. 基于牛顿迭代法的椭圆近似画法误差分析[J]. 图学学报, DOI: 10.11996/JG.j.2095-302X.2016020189.
Zhou Yahui. Error Analysis of Ellipse Based on Newton Iteration Method[J]. Journal of Graphics, DOI: 10.11996/JG.j.2095-302X.2016020189.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/10.11996/JG.j.2095-302X.2016020189
http://www.txxb.com.cn/CN/Y2016/V37/I2/189