欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

一种基于RGBD 图像的似物性采样算法

  

  • 出版日期:2015-12-31 发布日期:2016-01-15

Object Proposals from RGBD Images

  • Online:2015-12-31 Published:2016-01-15

摘要: 近年来,图像的似物性采样研究成为一个热门的研究领域。似物性采样是提取一
幅图像中可能成为任意目标的窗口,用于减少目标识别的搜索窗口。但目前有关似物性采样的
研究都是基于RGB 图像的,本文基于RGBD 图像的似物性采样算法,结合了目前RGB 图像似
物性采样最好的方法,并利用D 图的深度似物性特征,提出了基于贝叶斯框架的RGBD 图像的
似物性采样方法。在NYU Depth 数据集上实验证明了这些似物性描述方法的结合要比单独使用
任一种描述结果更优。最后,与目前流行的基于RGB 图像的似物性采样方法进行了对比实验,
证明了深度图的加入可以更好的优化似物性采样的结果。

关键词: 似物性采样, RGBD, 目标检测, 目标识别

Abstract: In recent years, object proposals has become a major research area. Object proposals define
and train a measure of objectness generic over classes. But the current research about objectness is
based on RGB image. We give a measure of objectness via RGBD images. It combines current
state-of-the-art RGB objectness, and design two objectness cues based on depth image, then use a
Bayesian framework to combine them. At NYU Depth dataset we demonstrate that the combined
objectness measure performs better than any cue alone, and also outperforms traditional objectness
based on RGB image. It′s proven that the addition of depth map can better optimize objectness.

Key words: object proposals, RGBD, object detection, object recognition