欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

基于视觉词袋的视频检索校准方法

  

  • 出版日期:2016-02-26 发布日期:2016-02-26

Using Bag of Visual Words for Video Retrieval Calibration

  • Online:2016-02-26 Published:2016-02-26

摘要: 随着互联网技术的飞速发展,视频数据呈现海量爆炸式增长,传统的视频搜索引擎
多数采用单一的基于文本的检索方法,该检索方法对于视频这类非结构化数据,存在着内容缺失、
语义隔阂等问题,导致检索结果相关度较低。提出一种基于视觉词袋的视频检索校准方法,该方
法结合了视频数据的可视化特征提取技术、TF-IDF 技术、开放数据技术,为用户提供优化后的
视频检索校准结果。首先,基于HSV 模型的聚类算法提取视频的关键帧集合及关键帧权值向量;
接着用关键帧图像的加速稳健特征等表示视频的内容特征,解决视频检索的内容缺失问题;然后
利用TF-IDF 技术衡量查询语句关键字的权值,并开放数据获得查询语句关键字的可视化特征和
语义信息,解决视频检索的语义隔阂问题;最后,将提出的基于视觉词袋的视频检索校准算法应
用于Internet Archive 数据集。实验结果表明,与传统的基于文本的视频检索方法相比,该方法的
平均检索结果相关度提高了15%。

关键词: :视觉词袋, 加速稳健特征, TF-IDF, 关键帧提取, 开放数据, 检索校准

Abstract: With the rapid development of Internet technology, the number of videos is proliferating in
an exploding way. The traditional text-based retrieval method may bring problems of content missing
and semantic gap, and result in lower retrieval relevance score. Therefore, a video retrieval calibration
method is proposed, which is based on bag of visual words and combines the visual features
extraction technology, TF-IDF technology and the open data technology. First, the HSV-based
clustering algorithm is used to extract the video key frames and the weight vector. Second, speed up
robust features and some other visual features are used to resolve video content missing problem.
Third, the TF-IDF technology is used to measure the weight of keyword, and the open data
technology to obtain the visual features and semantic of the query word, then solve the semantic gap
problem. Finally, our video retrieval calibration algorithm is applied on the Internet Archive data set.
The result shows that compared with traditional text-based video retrieval method, our method has a
15% relative improvement on the average retrieval relevance score.

Key words: bag of visual words, speed up robust features, TF-IDF, key frame extraction, open data;
video retrieval calibration