欢迎访问《图学学报》 分享到:

图学学报

• 几何设计与计算 • 上一篇    下一篇

视锥体裁剪几何算法研究

  

  • 出版日期:2017-02-28 发布日期:2017-02-22

View Frustum Culling Geometric Algorithm

  • Online:2017-02-28 Published:2017-02-22

摘要: 从几何角度出发,以投影理论为指导,设计了一种降维投影的视锥体裁剪几何算法。
基本思想是基于视锥体构建计算坐标系,在计算坐标系下,向两个投影平面做正投影。空间中被
裁剪线段与视锥体的位置关系被简化为投影平面内线段与等腰梯形的关系。这种几何化的降维方
法有利于解决空间几何奇异问题。构建了空间视锥体裁剪中线段与视锥体的各种位置关系的测试
样本,特别是78 种处于几何奇异状态的位置关系,用于综合评估算法的速度和稳定性。用C 语
言在VC++平台上分别实现了投影降维的视锥体裁剪几何算法、经典的Liang-Barsky 算法和与6
个面分别求交的一般算法。在定性分析基础上,利用测试样本对3 种算法做了计算速度与稳定性
方面的测试对比。

关键词: 视锥体裁剪, 几何算法, 投影理论, 几何奇异

Abstract: From the point of view of geometry, a view frustum culling geometric algorithm is
designed based on projective theory in descriptive geometry. The basic idea is that a proper
computational coordinate system is built, where the space position relation of the view frustum and a
line segment is transformed into the plane position relation of a trapezoid and the line segment by
simple orthographic projection. This geometric dimension reduction method is beneficial to solve
space geometric singular issue. A test sample is designed which includes all kinds of typical position
relations of the view frustum and the line segment to comprehensively evaluate algorithm’s speed and
stability. And especially, there are 78 kinds of geometric singular relations. At last, our view frustum
culling geometric algorithm, classical Liang-Barsky algorithm and a basic algorithm to solvethe
problem of intersection with 6 planes have been implemented on Visual C++ with C program. On the
basement of qualitative analysis, these 3 algorithms have been tested on speed and stability.

Key words: view frustum culling, geometric algorithm, projection theory, geometric singular