欢迎访问《图学学报》 分享到:

图学学报

• 医学图像与设备 • 上一篇    下一篇

基于ROI 及Clifford 代数相对不变量的3D医学图像配准

  

  1. 南通大学电气工程学院,江苏 南通 226019
  • 出版日期:2017-02-28 发布日期:2017-02-22
  • 基金资助:
    国家自然科学基金项目(61273024,61305031);江苏省自然科学基金项目(BY2016053-11);江苏省“333”高层次人才培养工程项目
    (BRA2015366);江苏省优势学科项目(PAPD)

3D Medical Image Registration Based on Clifford Relative Invariant and Region of Interest

  1. School of Electrical Engineering, Nantong University, Nantong Jiangsu 226019, China
  • Online:2017-02-28 Published:2017-02-22

摘要: 在利用颅骨轮廓几何特征配准基础上,提出配准前颅部图像的感兴趣区(ROI)圈定,
并在Clifford 代数框架下给出一种全新的相对不变量构造方法。该方法以颅部ROI 的轮廓数据作
为配准点云集,根据颅骨刚体轮廓相似性特点,运用Clifford 代数构造相对几何不变量的数学模
型及计算模型,并计算配准几何运算需求的平移量和旋转算子,采用3D 医学图像的相似性测度
直接进行三维数据的配准。数据源及评估使用BrainWeb 数据库和美国Vanderbilt 大学的“回顾性
图像配准评估”项目数据。实验表明,新方法在颅部的ROI 区域进行配准,能够精确的定位组织
器官的三维位置,执行效率高,配准均值误差在2~4 mm 内,达到亚像素级配准精度。

关键词: 医学图像配准, Clifford 代数, 相对不变量, 感兴趣区域

Abstract: A region of interest (ROI) is delineated based on the registration by using the geometric
features of skull contour, and a new construction method of relative invariants put forward under the
framework of Clifford algebra. The method proposed regards the contour data of ROI in the skull as
the point cloud for registration, and constructs the mathematical and calculation models of the relative
geometric invariants according to the similarity of skull contour. After calculating the translation and
the rotation operator required for the registration algorithm, the registration of three-dimensional data
can be preceded directly by adopting the new similarity measure of the 3D medical image. The
registration data are from the BrainWeb database and “Retrospective image registration evaluation”
project data of the University of Vanderbilt in the United States. Experiments show that our algorithm
has high efficiency in the registration of ROI in the skull. And it can calculate the 3D position of the
tissue organ more accurately. The mean error is within 2-4 mm, and the registration accuracy is up to
sub-pixel level.

Key words: medical image registration, Clifford algebra, relative invariant, region of interest