摘要: 在人机协调装配中,为了准确描述手部位姿,需要精确的指节图像特征提取与识 别。为了丰富手部信息,提出了基于 Laplace 逼近 Gaussian 过程的多分类算法,以实现基于手 部图像的指节识别。在类别信息无关联的假设基础上,将中层偏移测度特征的学习转化为对随 机量的学习;然后通过分析二值多分类高斯场上的后验计算,给出了基于 Laplace 逼近 Gaussian 过程的多分类高斯过程学习算法;通过构造中层随机信息的正定核函数,给出了基于 Laplace 的多分类高斯过程预测算法。最后,利用中层数据的分布学习与预测算法进行了指节图像训练 学习和固定阈值的图像识别。识别结果显示,该方法具有一定的指节识别能力。