• 专论:第16届媒体智能与大数据计算会议(CIDE & DEA 2019 大连) • 上一篇 下一篇
摘要: 推荐系统是解决信息过载的有效途径。传统的推荐系统难以从海量数据中推选出 符合用户个性化偏好的项目,推荐质量不高。为此,通过优化传统的协同过滤推荐算法,针对 数据稀疏性等问题,提出协同回归模型的矩阵分解算法(CLMF)。通过机器学习算法发掘内容信 息的深层次特征,提升了原始数据的信息量;并构建辅助特征矩阵,通过融合特征矩阵,CLMF 最大化了特征标签的作用,并结合数据标签,语义信息和评分矩阵得到推荐算法框架。在真实 数据集上实验结果显示,新型推荐算法可有效解决特征值缺失问题,改善了数据稀疏性,提升 了算法扩展性,并显著增强覆盖性。