欢迎访问《图学学报》 分享到:

图学学报

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于GAN 的树叶飘落模拟

  

  1. 北京林业大学信息学院,北京 100083
  • 出版日期:2020-02-29 发布日期:2020-03-11
  • 基金资助:
    北京林业大学建设世界一流学科和特色发展引导专项(2019XKJS0310);北京林业大学国家级大学生科研创新训练基金项目(S201710022052);
    北京市社会科学基金项目(17YTC030);中央高校基本科研业务费专项(2015ZCQ-XX,2017JC10);国家自然科学基金项目(61402038)

Leaf floating simulation based on GAN

  1. School of Information Science & Technology, Beijing Forestry University, Beijing 100083, China
  • Online:2020-02-29 Published:2020-03-11

摘要: 为了模拟在三维渲染、虚拟现实、游戏场景、电影特效等环境中具有真实感的树
叶飘落效果,同时受当下日益成熟的深度学习算法的启发,提出了一种基于生成式对抗网络
(GAN)的树叶飘落动态效果模拟算法。首先,通过实验或实地采集不同环境条件下(风力级别、
扰动级别等)树叶飘落的6 元时间序列制作训练数据集;然后使用该数据集对双通道对抗式生成
网络模型(DACGAN)进行训练;其次,训练后的模型能够根据需求(风力级别、扰动级别等)输
出三维落叶数据;最后,将这些数据用于各种图形渲染环境中。理想状态下,相对于传统的基
于数学模型控制飘落的方法以及人为设置关键帧的动画方法,可以为捕获树叶飘落的真实感提
供可能,且随着计算机视觉技术以及深度学习技术的发展成熟,使得现实中的三维数据更易获
取,生成模型更加优化,DACGAN 算法成本更低。

关键词: 树叶飘落, 动态模拟, 生成式对抗网络, 标签

Abstract: Inspired by the progress of deep learning algorithm, we propose a method based on the
generative adversarial network (GAN) to simulate the effect of leaf falling, in order to achieve
realistic leaf floating in the 3D rendering, virtual reality and other environments. Firstly, the training
data set is produced by experiment or in the field of 6-element time series of leaf falling under
different environmental conditions (wind level, disturbance level, etc.), and then the double-channel
auxiliary classifier generative adversarial networks model (DACGAN) is trained using the data set.
Secondly, the trained model can output 3D leaf data according to our demands (wind level,
disturbance level, etc.). Finally, the data can be used in a variety of graphic rendering environments.
Compared with the traditional mathematics-based method controlling the leaf floating and the
artificial animation method setting keyframes, our method, as the experimental results indicate, can
provide the possibility to capture the realism of the falling leaves. In addition, with the development
of computer vision and deep learning, the 3D data in reality is more easily acquired, the generated
model is more optimized, and the cost of DACGAN will be lower.

Key words: leaf floating, dynamic simulation, generative adversarial network, label