欢迎访问《图学学报》 分享到:

图学学报 ›› 2020, Vol. 41 ›› Issue (6): 897-904.DOI: 10.11996/JG.j.2095-302X.2020060897

• 图像处理与计算机视觉 • 上一篇    下一篇

基于 DenseNet-Attention 模型的高光谱图像分类

  

  1. (北方民族大学计算机科学与工程学院,宁夏 银川 750021)
  • 出版日期:2020-12-31 发布日期:2021-01-08
  • 基金资助:
    基金项目:国家自然科学基金项目(61461002,61762003);宁夏回族自治区重点研发计划项目(2019BDE03011);宁夏高等学校一流学科建设项目 (电子科学与技术学科) (NXYLXK2017A07) 

DenseNet-attention for hyperspectral remote sensing image classification  

  1. (School of Computer Science and Engineering, North Minzu University, Yinchuan Ningxia 750021, China) 
  • Online:2020-12-31 Published:2021-01-08
  • Supported by:
    Foundation items:National Natural Science Foundation of China (61461002, 61762003); Key Research and Development Project of Ningxia Hui Autonomous Region (2019BDE03011); Ningxia University First-Class Discipline Construction Project (Electronic Science and Technology) (NXYLXK2017A07) 

摘要: 摘 要:针对高光谱图像标记样本量少,提取特征不充分以及提取到的特征不区分贡献度 的问题,提出一个新型的 DenseNet-Attention 网络模型(DANet)。首先,该模型利用三维卷积核 同步提取联合光谱空间特征,同时密集连接网络(DenseNet)的稠密连接块除了能够充分提取更 加鲁棒的特征外,还减少了大量参数;其次,自注意力(self-attention)机制作为一个模块加入到 稠密连接块中,可以使上层提取到的特征在进入下一层网络之前,经过该模块对其进行权重分 配,使具有丰富的物类别信息的特征得到加强,进而区分特征的贡献度。网络模型以原始高光 谱图像邻域块作为输入,无需任何预处理,是一个端对端学习的深度神经网络。在印第安松树 林和帕维亚大学数据集上进行对比试验,网络模型的分类精度分别能够达到 99.43%和 99.99%, 有效提高了高光谱图像分类精度。

关键词: 关 键 词:三维卷积, 高光谱图像分类, 稠密网络, 自注意力机制, 残差连接

Abstract: Abstract: A new neural network, called DenseNet-Attention (DANet), was proposed in this paper for hyperspectral images classification to solve the problems of small sample quantity, insufficient features extraction, and indiscriminating contribution of the extracted features. First, it employed the three-dimensional convolution kernel to simultaneously extract both spectral and spatial features. Meanwhile, due to its dense blocks, DenseNet can not only fully extract more robust features, but reduce a large number of parameters. Second, the self-attention mechanism was added to the dense block as a module. Before the extracted feature was passed into the next layer of network, the weight was assigned to the feature according to its contribution through this model, thus strengthening the representation of the feature with ground object information. DANet was an end-to-end deep learning framework, which took the neighborhood block of the original hyperspectral image as an input without any preprocessing. Comparative experiments on Indian Pines and Pavia University datasets show that the classification accuracy of the network model proposed in this paper can reach 99.43% and 99.99% respectively, effectively enhancing the classification accuracy of hyperspectral images.

Key words: Keywords: three-dimensional convolution, hyperspectral remote sensing image classification, DenseNet, self-attenrion, skip connect 

中图分类号: