图学学报 ›› 2020, Vol. 41 ›› Issue (6): 939-936.DOI: 10.11996/JG.j.2095-302X.2020060939
摘要: 摘 要:近年来,实例分割技术正受到越来越多的关注。Mask R-CNN 实例分割方法是实 例分割领域中的重要方法,但是用 Mask R-CNN 方法得到的结果中,每个分割出的实例的边缘 往往不够理想,无法与真正的边缘完全吻合。针对此问题,提出了一种用显著性目标提取方法 得到的结果与 Mask R-CNN 实例分割结果相结合的方法,从而得到更好的实例分割边缘。首先, 利用 Mask R-CNN 对图片进行识别,得到实例分割的结果。然后用 PoolNet 对待检测图片进行 处理,得到图片中的显著物体信息。最后用 PoolNet 的结果对实例分割的掩码图边缘进行优化, 从而得到边缘更好的实例分割结果。经过测试,该方法可以对绝大多数待检测目标较为显著的 图片在一些重要指标上得到比 Mask R-CNN 更好的分割结果。
中图分类号: