欢迎访问《图学学报》 分享到:

图学学报 ›› 2021, Vol. 42 ›› Issue (3): 385-397.DOI: 10.11996/JG.j.2095-302X.2021030385

• 综述 • 上一篇    下一篇

基于深度学习的图像本征属性预测方法综述

  

  1. 1. 北京理工大学光电学院,北京 100081;  2. 北京电影学院未来影像高精尖创新中心,北京 100088
  • 出版日期:2021-06-30 发布日期:2021-06-29
  • 基金资助:
    国家自然科学基金项目(61960206007);广东省重点领域研发计划项目(2019B010149001);高等学校学科创新引智计划项目(B18005) 

Review on deep learning based prediction of image intrinsic properties 

  1. 1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;  2. Advanced Innovation Center for Future Visual Entertainment, Beijing Film Academy, Beijing 100088, China
  • Online:2021-06-30 Published:2021-06-29
  • Supported by:
    National Natural Science Foundation of China (61960206007); R & D Projects in Key Areas of Guangdong (2019B010149001); Programme of Introducing Talents of Discipline to Universities (B18005) 

摘要: 真实世界的外观主要取决于场景内对象的几何形状、表面材质及光照的方向和强度等图像的本 征属性。通过二维图像预测本征属性是计算机视觉和图形学中的经典问题,对于图像三维重建、增强现实等应 用具有重要意义。然而二维图像的本征属性预测是一个高维的、不适定的逆向问题,通过传统算法无法得到理 想结果。针对近年来随着深度学习在二维图像处理各个方面的应用,出现的大量利用深度学习对图像本征属性 进行预测的研究成果,首先介绍了基于深度学习的图像本征属性预测算法框架,分析了以获得场景反射率和阴 影图为主的本征图像预测、以获得图像中材质 BRDF 参数为主的本征属性预测及以获得图像光照相关信息为主 的本征属性预测 3 个方向的国内外研究进展并总结了各自方法的优缺点,最后指出了图像本征属性预测的研究 趋势和重点。

关键词: 计算机视觉, 计算机图形学, 本征属性预测, 本征图像预测, BRDF 预测, 光照预测, 深度学习

Abstract:  The appearance of the real world primarily depends on such intrinsic properties of images as the geometry of objects in the scene, the surface material, and the direction and intensity of illumination. Predicting these intrinsic properties from two-dimensional images is a classical problem in computer vision and graphics, and is of great importance in three-dimensional image reconstruction and augmented reality applications. However, the prediction of intrinsic properties of two-dimensional images is a high-dimensional and ill-posed inverse problem, and fails to yield the desired results with traditional algorithms. In recent years, with the application of deep learning to various aspects of two-dimensional image processing, a large number of research results have predicted the intrinsic properties of images through deep learning. The algorithm framework was proposed for deep learning-based image intrinsic property prediction. Then, the progress of domestic and international research was analyzed in three areas: intrinsic image prediction based on acquiring scene reflectance and shading map, intrinsic properties prediction based on acquiring material BRDF parameters, and intrinsic properties prediction based on acquiring illumination-related information. Finally, the advantages and disadvantages of each method were summarized, and the research trends and focuses for image intrinsic property prediction were identified. 

Key words: computer vision, computer graphics, intrinsic properties prediction, intrinsic image prediction, BRDF prediction, illumination prediction, deep learning 

中图分类号: