[1] |
中国国际核聚变能源计划执行中心. “人造太阳”计划: 和平利用聚变能[J]. 国际人才交流, 2019(9): 8-10.
|
|
China International Nuclear Fusion Energy Program Execution Center. “Artificial Sun” project: peaceful utilization of fusion energy[J]. International Talent, 2019(9): 8-10. (in Chinese)
|
[2] |
张竞宇, 李璐, 宋文, 等. 水冷聚变堆活化腐蚀产物源项分析程序开发[J]. 原子能科学技术, 2015, 49(S1): 68-74.
|
|
ZHANG J Y, LI L, SONG W, et al. Program development for source term analysis of activated corrosion product in water-cooled fusion reactor[J]. Atomic Energy Science and Technology, 2015, 49(S1): 68-74. (in Chinese)
|
[3] |
DI PACE L, DACQUAIT F, SCHINDLER P, et al. Development of the PACTITER code and its application to safety analyses of ITER primary cooling water system[J]. Fusion Engineering and Design, 2007, 82(3): 237-247.
DOI
URL
|
[4] |
ARDITSAS P J. Activation product transport using TRACT: ore estimation of an ITER cooling loop[J]. Fusion Engineering and Design, 1999, 45(2): 169-185.
DOI
URL
|
[5] |
WU Y C, XIE X, WANG J C, et al. ForVizor: visualizing spatio-temporal team formations in soccer[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25(1): 65-75
DOI
URL
|
[6] |
FUJIWARA T, SHILPIKA, SAKAMOTO N, et al. A visual analytics framework for reviewing multivariate time-series data with dimensionality reduction[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1601-1611.
DOI
URL
|
[7] |
CHEN H C, YANG B, LIU J M, et al. Mining spatiotemporal diffusion network: a new framework of active surveillance planning[J]. IEEE Access, 2019, 7: 108458-108473.
DOI
URL
|
[8] |
WANG X M, CHEN W, XIA J Z, et al. ConceptExplorer: visual analysis of concept drifts in multi-source time-series data[C]// 2020 IEEE Conference on Visual Analytics Science and Technology. New York: IEEE Press, 2021: 1-11.
|
[9] |
AIGNER W, MIKSCH S, SCHUMANN H, et al. Time & time-oriented data[M]//Visualization of Time-Oriented Data. London: Springer London, 2011: 45-68.
|
[10] |
HOCHHEISER H, SHNEIDERMAN B. Dynamic query tools for time series data sets: timebox widgets for interactive exploration[J]. Information Visualization, 2004, 3(1): 1-18.
DOI
URL
|
[11] |
PENG R D. A method for visualizing multivariate time series data[J]. Journal of Statistical Software, 2008, 25(Code Snippet 1): 1-17.
|
[12] |
PYLVÄNEN M, ÄYRÄMÖ S, KÄRKKÄINEN T. Visualizing time series state changes with prototype based clustering[M]// Adaptive and Natural Computing Algorithms. Heidelberg: Springer, 2009: 619-628.
|
[13] |
WANG T D, PLAISANT C, SHNEIDERMAN B, et al. Temporal summaries: supporting temporal categorical searching, aggregation and comparison[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1049-1056.
DOI
PMID
|
[14] |
BACH B, SHI C L, HEULOT N, et al. Time curves: folding time to visualize patterns of temporal evolution in data[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 559-568.
DOI
URL
|
[15] |
GU Y, WANG C L. TransGraph: hierarchical exploration of transition relationships in time-varying volumetric data[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2015-2024.
DOI
URL
|
[16] |
LIU S X, YIN J L, WANG X T, et al. Online visual analytics of text streams[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(11): 2451-2466.
DOI
URL
|
[17] |
LIU D Y, XU P P, REN L. TPFlow: progressive partition and multidimensional pattern extraction for large-scale spatio-temporal data analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 1-11.
|
[18] |
ADHIKARI R, AGRAWAL R K. A combination of artificial neural network and random walk models for financial time series forecasting[J]. Neural Computing and Applications, 2014, 24(6): 1441-1449.
DOI
URL
|
[19] |
BERTHOLD M R, HÖPPNER F. On clustering time series using euclidean distance and Pearson correlation[EB/OL]. [2022-02-13]. https://arxiv.org/abs/1601.02213.
|
[20] |
BAI S H, QI H D, XIU N H. Constrained best euclidean distance embedding on a sphere: a matrix optimization approach[J]. SIAM Journal on Optimization, 2015, 25(1): 439-467.
DOI
URL
|
[21] |
HSU C J, HUANG K S, YANG C B, et al. Flexible dynamic time warping for time series classification[J]. Procedia Computer Science, 2015, 51(1): 2838-2842.
DOI
URL
|
[22] |
AßFALG J, KRIEGEL H P, KRÖGER P, et al. Similarity search on time series based on threshold queries[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006: 276-294.
|
[23] |
DING H, TRAJCEVSKI G, SCHEUERMANN P, et al. Querying and mining of time series data[J]. Proceedings of the VLDB Endowment, 2008, 1(2): 1542-1552.
DOI
URL
|