[1] |
ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[EB/OL]. [2022-01-08]. https://arxiv.org/abs/1610.02984.
|
[2] |
ZHANG X, LUO H, FAN X, et al. AlignedReID: surpassing human-level performance in person re-identification[EB/OL]. [2022-01-08]. https://arxiv.org/abs/1711.08184.
|
[3] |
WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 79-88.
|
[4] |
BĄK S, CARR P, LALONDE J F. Domain adaptation through synthesis for unsupervised person re-identification[C]// Computer Vision - ECCV 2018: 15th European Conference, Part XIII. New York: ACM, 2018: 193-209.
|
[5] |
SUN X X, ZHENG L. Dissecting person re-identification from the viewpoint of viewpoint[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 608-617.
|
[6] |
WANG Y N, LIAO S C, SHAO L. Surpassing real-world source training data: random 3D characters for generalizable person re-identification[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3422-3430.
|
[7] |
ZHANG T Y, XIE L X, WEI L H, et al. UnrealPerson: an adaptive pipeline towards costless person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11501-11510.
|
[8] |
CUI Y, SONG Y, SUN C, et al. Large scale fine-grained categorization and domain-specific transfer learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4109-4118.
|
[9] |
CHAKRABORTY S, UZKENT B, AYUSH K, et al. Efficient conditional pre-training for transfer learning[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 4240-4249.
|
[10] |
YAN X, ACUNA D, FIDLER S. Neural data server: a large-scale search engine for transfer learning data[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3892-3901.
|
[11] |
LUO H, WANG P C, XU Y, et al. Self-supervised pre-training for transformer-based person re-identification[EB/OL]. [2021-12-08]. https://arxiv.org/abs/2111.12084.
|
[12] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002.
|
[13] |
FU D P, CHEN D D, BAO J M, et al. Unsupervised pre-training for person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14745-14754.
|
[14] |
DAI Y X, LIU J, SUN Y F, et al. IDM: an intermediate domain module for domain adaptive person re-ID[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 11844-11854.
|
[15] |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100.
DOI
URL
|
[16] |
SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited[J]. ACM Transactions on Database Systems, 2017, 42(3): 1-21.
|
[17] |
SHAMEEM M U S, FERDOUS R. An efficient k-means algorithm integrated with Jaccard distance measure for document clustering[C]// 2009 First Asian Himalayas International Conference on Internet. New York: IEEE Press, 2009: 1-6.
|
[18] |
SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1.
|
[19] |
ZHUANG Z J, WEI L H, XIE L X, et al. Rethinking the distribution gap of person re-identification with camera-based batch normalization[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 140-157.
|
[20] |
SOLOVEITCHIK M, DISKIN T, MORIN E, et al. Conditional frechet inception distance[EB/OL]. [2021-11-21]. https://arxiv.org/abs/2103.11521.
|