欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (5): 947-954.DOI: 10.11996/JG.j.2095-302X.2023050947

• 图像处理与计算机视觉 • 上一篇    下一篇

基于张量低秩分解和非下采样剪切波变换的视频图像去雪方法

张云鹏1(), 周浦城1,2(), 薛模根1,2   

  1. 1.偏振光成像探测技术安徽省重点实验室,安徽 合肥 230031
    2.陆军炮兵防空兵学院信息工程系,安徽 合肥 230031
  • 收稿日期:2023-03-09 接受日期:2023-05-26 出版日期:2023-10-31 发布日期:2023-10-31
  • 通讯作者: 周浦城(1977-),男,教授,博士。主要研究方向为图形图像处理、计算机视觉等。E-mail:zhoupc@hit.edu.cn
  • 作者简介:张云鹏(1993-),男,硕士研究生。主要研究方向为数字图像处理。E-mail:1791973191@qq.com
  • 基金资助:
    国家自然科学基金项目(61379105);安徽省自然科学基金项目(1908085MF208)

Snow removal in video based on low-rank tensor decomposition and non-subsampled shearlet transform

ZHANG Yun-peng1(), ZHOU Pu-cheng1,2(), XUE Mo-gen1,2   

  1. 1. Anhui Province Key Laboratory of Polarization Imaging Detection Technology, Hefei Anhui 230031, China
    2. Department of Information Engineering, PLA Army Academy of Artillery and Air Defense, Hefei Anhui 230031, China
  • Received:2023-03-09 Accepted:2023-05-26 Online:2023-10-31 Published:2023-10-31
  • Contact: ZHOU Pu-cheng (1977-), professor, Ph.D. His main research interests cover graphic image processing, computer vision, etc. E-mail:zhoupc@hit.edu.cn
  • About author:ZHANG Yun-peng (1993-), master student. His main research interest covers digital image processing. E-mail:1791973191@qq.com
  • Supported by:
    National Natural Science Foundation of China(61379105);Anhui Provincial Natural Science Foundation(1908085MF208)

摘要:

在雪天条件下,雪花会对视频监控系统造成遮挡,使部分重要景物信息无法被捕获,严重降低获取的视频图像质量,对后续目标检测与识别等高级图像处理造成强烈干扰。现有视频图像去雪方法普遍存在去雪效果不稳定,运算耗时长等缺陷。针对该问题,首先利用张量能充分挖掘视频图像中蕴含的空间位置信息的优势,通过张量低秩分解模型与三维全变分正则化相结合,将受到雪花污染的监控视频分解为静态背景层和运动前景层;然后,采用基于非下采样剪切波变换和数学形态学滤波方法,将运动前景层进一步分解为运动物体层和雪层;最后,将静态背景层和运动物体层进行重构,得到最终去雪后的视频图像。实验结果表明,该方法能够有效去除视频图像中的雪花干扰,清晰保留景物边缘信息,在处理效果和运算效率上均优于现有先进算法。

关键词: 张量低秩分解, 非下采样剪切波变换, 视频去雪, 数学形态学滤波

Abstract:

Under snowy conditions, snowflakes can obstruct video surveillance systems, preventing the capture of important scenery information and drastically reducing the quality of acquired video images. This interference can also strongly affect advanced image processing techniques such as subsequent target detection and recognition. The existing methods for removing snow from video images commonly suffer from drawbacks such as unstable snow removal performance and long computational time. To address this issue, firstly, the advantages of tensors in fully capturing spatial location information within video images were leveraged. By combining a low-rank tensor decomposition model with three-dimensional total variation regularization, the snow-contaminated surveillance video was decomposed into a static background layer and a moving foreground layer. Then, based on the non-subsampled shearlet transform and mathematical morphology filtering methods, the moving foreground layer was further decomposed into a moving object layer and a snow layer. Finally, the static background layer and moving object layer were reconstructed to obtain snow-free video images. The experimental results demonstrated the effectiveness of this approach in removing snowflake interference from video images while clearly retaining scene edge information. Moreover, the proposed method outperforms existing state-of-the-art algorithms in terms of processing efficacy and operational efficiency.

Key words: low-rank tensor decomposition, non-subsampled shearlet transform, snow removal in video, mathematical morphology filtering

中图分类号: