图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1239-1250.DOI: 10.11996/JG.j.2095-302X.2023061239
收稿日期:
2023-07-21
接受日期:
2023-09-20
出版日期:
2023-12-31
发布日期:
2023-12-17
通讯作者:
潘万彬(1983-),男,副教授,博士。主要研究方向为CAD、3D打印等。E-mail:作者简介:
邢晓月(1998-),女,硕士研究生。主要研究方向为3D打印。E-mail:xiaoyuexing@hdu.edu.cn
基金资助:
XING Xiao-yue(), TAO Xiu-ting, WANG Shu-fang, PAN Wan-bin(
)
Received:
2023-07-21
Accepted:
2023-09-20
Online:
2023-12-31
Published:
2023-12-17
Contact:
PAN Wan-bin (1983-), associate professor, Ph.D. His main research interests cover CAD, 3D printing, etc. About author:
XING Xiao-yue (1998-), master student. Her main research interest covers 3D printing. E-mail:xiaoyuexing@hdu.edu.cn
Supported by:
摘要:
多零件在打印腔室中的布局往往直接影响熔融沉积批量制造的效率和能力。同时,喷头空行程长度对上述效率和能力具有显著的影响。为此,提出了一种面向空行程最小化的多零件优化布局方法,通过优化地减少零件之间喷头的空行程长度来提升熔融沉积批量制造的效率以及打印腔室可容空间。首先,为兼顾空行程长度计算的效率(如加速几何干涉检测)和计算的准确度,以层厚为基准,构建每个零件相应的、逐层堆叠的体素代理模型。然后,基于贪心策略和粒子群优化算法,以逐对累积的方式确定每个体素代理模型的放置顺序和放置位置。最后,将体素代理模型置换为对应的零件,获得输入零件集紧凑的布局。在一组形状复杂的零件集上开展实验。结果表明:在相同的衡量标准下,该方法相比于Magics空行程总量约减少了31.17%。与现有的商业化软件中的布局功能相比,该方法在实施批量制造形状复杂零件集时具有可显著减少喷头空行程长度总量的巨大潜力。
中图分类号:
邢晓月, 陶秀挺, 王姝钫, 潘万彬. 面向喷头空行程长度最小化的多零件优化布局方法[J]. 图学学报, 2023, 44(6): 1239-1250.
XING Xiao-yue, TAO Xiu-ting, WANG Shu-fang, PAN Wan-bin. Optimizing the multi-part layout to minimize the empty travel distance of nozzle[J]. Journal of Graphics, 2023, 44(6): 1239-1250.
图1 打印喷头在2零件间移动的空行程图示((a)切片好的2个零件;(b)切片层1喷头移动的空行程长度;(c)喷头移动的总空行程长度)
Fig. 1 The empty travel distance of the nozzle between two parts ((a) Sliced two parts; (b) The empty travel distance of the nozzle moving in layer one; (c) The total empty travel distance)
图4 快速逐层构建输入零件的体素代理模型((a)读取信息;(b)标记悬空区域;(c)轴向包围盒;(d)逐层体素化;(e)得到表面体素;(f)代理模型;(g)代理模型(可实现自支撑);(h)体素的属性表示)
Fig. 4 Quickly construct the voxel-based surrogate model of input parts layer by layer ((a) Reading information; (b) Marking of overhanging areas; (c) Axial containment box; (d) Layer by layer voxelization; (e) Obtaining surface voxels; (f) Surrogate model; (g) Surrogate model (self-supporting); (h) Attribute representation of voxels)
图5 体素代理模型空行程图示((a)模型间总空行程;(b)单层空行程)
Fig. 5 Empty travel distance of voxel-based surrogate models ((a) Total empty travel distance between models; (b) Single empty travel distance)
图12 代理模型空间位置优化过程示例((a) 20个粒子;(b)优化示例)
Fig. 12 Example of surrogate model spatial position optimization procedure ((a) 20 particles; (b) Optimization example)
方法 | 布局优化过程中零件 表示方法 | 优化过程中考虑 打印方向 | 逐层分析布局时零件 间空行程 | 自支撑区域下方 空间利用 | 零件堆叠 放置 |
---|---|---|---|---|---|
文献[4] | 零件本身 | 否 | 是 | 否 | 否 |
文献[12] | 投影多边形 | 是 | 否 | 否 | 否 |
文献[15] | 零件包围盒 | 是 | DLP打印,不适用 | 否 | 是 |
本文 | 每层外轮廓体素 | 否 | 是 | 是 | 否 |
表1 方法对比
Table 1 Method comparison with several research work
方法 | 布局优化过程中零件 表示方法 | 优化过程中考虑 打印方向 | 逐层分析布局时零件 间空行程 | 自支撑区域下方 空间利用 | 零件堆叠 放置 |
---|---|---|---|---|---|
文献[4] | 零件本身 | 否 | 是 | 否 | 否 |
文献[12] | 投影多边形 | 是 | 否 | 否 | 否 |
文献[15] | 零件包围盒 | 是 | DLP打印,不适用 | 否 | 是 |
本文 | 每层外轮廓体素 | 否 | 是 | 是 | 否 |
实验 模型 | 批量制造 模型数量 | 平均零件 空行程 | 布局 序列 | 总空行程 (mm) |
---|---|---|---|---|
实验Ⅱ | 15 | 111.5 | 体积 | 1 672 |
15 | 104.2 | 高度 | 1 563 | |
15 | 113.7 | 随机 | 1 706 | |
15 | 103.4 | 投影面积 | 1 551 | |
15 | 73.1 | 贪心(本文) | 1 096 |
表2 不同布局序列下的空行程
Table 2 Empty travel distance under different layout sequences
实验 模型 | 批量制造 模型数量 | 平均零件 空行程 | 布局 序列 | 总空行程 (mm) |
---|---|---|---|---|
实验Ⅱ | 15 | 111.5 | 体积 | 1 672 |
15 | 104.2 | 高度 | 1 563 | |
15 | 113.7 | 随机 | 1 706 | |
15 | 103.4 | 投影面积 | 1 551 | |
15 | 73.1 | 贪心(本文) | 1 096 |
实验模型 | 总空行程长度(mm) | 预计批量制造时长(min) | ||||
---|---|---|---|---|---|---|
本文 | Magics | 减少比例(%) | 本文 | Magics | 优化时长 | |
实验Ⅰ | 583 | 847 | 31.17 | 103 | 123 | 20 |
实验Ⅱ | 1027 | 1483 | 30.75 | 263 | 286 | 23 |
表3 Magics布局对比实验
Table 3 Layout comparison experiments with Magics
实验模型 | 总空行程长度(mm) | 预计批量制造时长(min) | ||||
---|---|---|---|---|---|---|
本文 | Magics | 减少比例(%) | 本文 | Magics | 优化时长 | |
实验Ⅰ | 583 | 847 | 31.17 | 103 | 123 | 20 |
实验Ⅱ | 1027 | 1483 | 30.75 | 263 | 286 | 23 |
[1] |
KARNAN B, BABU K, SHANMUGAM V, et al. Fused deposition modeling based polymeric materials and their performance: a review[J]. Polymer Composites, 2021, 42(11): 5656-5677.
DOI URL |
[2] |
ARAÚJO L J, ÖZCAN E, ATKIN J A, et al. Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset[J]. International Journal of Production Research, 2019, 57(18): 5920-5934.
DOI URL |
[3] |
OH Y, WITHERELL P, LU Y, et al. Nesting and scheduling problems for additive manufacturing: a taxonomy and review[J]. Additive Manufacturing, 2020, 36: 101492.
DOI URL |
[4] |
JIANG J C, XU X, XIONG Y, et al. A novel strategy for multi-part production in additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5-6): 1237-1248.
DOI |
[5] |
CALABRESE M, PRIMO T, PRETE A, et al. Nesting algorithm for optimization part placement in additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 4613-4634.
DOI |
[6] |
CHE Y X, HU K X, ZHANG Z Z, et al. Machine scheduling with orientation selection and two-dimensional packing for additive manufacturing[J]. Computers & Operations Research, 2021, 130: 105245.
DOI URL |
[7] |
VOLPATO N, GALVAO L C, NUNES L, et al. Combining heuristics for tool-path optimisation in material extrusion additive manufacturing[J]. Journal of the Operational Research Society, 2020, 71: 867-877.
DOI URL |
[8] | ABILGAZIYEV A, KULZHAN T, RAISSOV N, et al. Design and development of multi-nozzle extrusion system for 3D printer[C]// 2015 International Conference on Informatics, Electronics & Vision. New York: IEEE Press, 2015: 1-5. |
[9] |
YOSEP O, CHI Z, SARA B. The impact of build orientation policies on the completion time in two-dimensional irregular packing for additive manufacturing[J]. International Journal of Production Research, 2020, 58(21): 6601-6615.
DOI URL |
[10] |
ZHANG Y C, BERNARD A, HARIK R, et al. Build orientation optimization for multi-part production in additive manufacturing[J]. Journal of Intelligent Manufacturing, 2017, 28(6): 1393-1407.
DOI URL |
[11] |
GRIFFITHS V, SCANLAN J P, ERES M H, et al. Cost-driven build orientation and Bin packing of parts in selective laser melting (SLM)[J]. European Journal of Operational Research, 2019, 273(1): 334-352.
DOI URL |
[12] |
ZHANG Y C, BERNARD A, HARIK R, et al. A new method for single-layer-part nesting in additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(5): 840-854.
DOI URL |
[13] |
BALDACCI R, BOSCHETTI M A, GANOVELLI M, et al. Algorithms for nesting with defects[J]. Discrete Applied Mathematics, 2014, 163: 17-33.
DOI URL |
[14] |
YANG Y Z, LI H C, ZHANG K X, et al. A 3D nesting method based on the convex-concave coding similarity of the voxelized model for additive manufacturing[J]. Additive Manufacturing, 2023, 64: 103429.
DOI URL |
[15] |
CAO L X, TIAN L H, PENG H, et al. Constrained stacking in DLP 3D printing[J]. Computers & Graphics, 2021, 95: 60-68.
DOI URL |
[16] |
JIANG J C, XU X, STRINGER J. Optimisation of multi-part production in additive manufacturing for reducing support waste[J]. Virtual and Physical Prototyping, 2019, 14(3): 219-228.
DOI URL |
[17] |
ROMANOVA T, BENNELL J, STOYAN Y, et al. Packing of concave polyhedra with continuous rotations using nonlinear optimisation[J]. European Journal of Operational Research, 2018, 268(1): 37-53.
DOI URL |
[18] |
ZHANG H, LIU Q, WEI L J, et al. An iteratively doubling local search for the two-dimensional irregular Bin packing problem with limited rotations[J]. Computers & Operations Research, 2022, 137: 105550.
DOI URL |
[19] |
PIOTROWSKI A P, NAPIORKOWSKI J J, PIOTROWSKA A E. Population size in particle swarm optimization[J]. Swarm and Evolutionary Computation, 2020, 58: 100718.
DOI URL |
[20] | SPACECLAIM. SpaceClaim web help[EB/OL]. [2023-03-25]. https://www.ansys.com/products/3d-design/ansys-spaceclaim?spaceclaimredirect. |
[21] | CORPORATION M N. Materialise magics[EB/OL]. [2023-03-20]. https://www.materialise.com/en/software/magics. |
[1] | 白宇, 王坤. 基于参数化的3D打印个性化外固定支具设计研究[J]. 图学学报, 2023, 44(5): 1050-1056. |
[2] | 潘丽娟, 商 正, 贾桂红, 储开宇, 王进峰. 熔融沉积制造表面粗糙度参数显著性及预测模型研究[J]. 图学学报, 2020, 41(4): 593-598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||