图学学报 ›› 2024, Vol. 45 ›› Issue (1): 169-182.DOI: 10.11996/JG.j.2095-302X.2024010169
王浩淼1(), 桑胜举1, 段晓东2, 张伟华3, 陶体伟1, 马婷4
收稿日期:
2023-09-06
接受日期:
2023-11-29
出版日期:
2024-02-29
发布日期:
2024-02-29
第一作者:
王浩淼(1994-),男,助理教师,硕士。主要研究方向为虚拟现实、可视化。E-mail:wanghaomiao@tsu.edu.cn
基金资助:
WANG Haomiao1(), SANG Shengju1, DUAN Xiaodong2, ZHANG Weihua3, TAO Tiwei1, MA Ting4
Received:
2023-09-06
Accepted:
2023-11-29
Published:
2024-02-29
Online:
2024-02-29
First author:
WANG Haomiao (1994-), assistant lecturer, master. His main research interests cover virtual reality, visualization. E-mail:wanghaomiao@tsu.edu.cn
Supported by:
摘要:
三维建模技术在各个领域发挥着重要作用,但以桌面交互为主的三维建模方式仍复杂、抽象且不支持在线协作。为此,借助虚拟现实(VR)技术的沉浸性、交互性、想象性等优点,提出一种VR环境下的网络协同三维建模方法,使得用户以沉浸式的交互方式建立三维模型,并支持多人实时在线可视化协作。首先,提出了一种VR环境下的三维模型绘制交互方式;其次,将三维模型进行分类,提出一种分层构建式的三维模型网格生成算法,用于建立平面模型和立体模型;最后,设计了一种VR环境下的三维建模网络协同模块,并基于Socket通信实现了网络同步。通过与传统三维建模软件的三维建模方法进行对比实验表明,该方法更加简捷、直观和高效,且易于普通用户掌握。
中图分类号:
王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182.
WANG Haomiao, SANG Shengju, DUAN Xiaodong, ZHANG Weihua, TAO Tiwei, MA Ting. Collaborative 3D modeling technique in virtual reality[J]. Journal of Graphics, 2024, 45(1): 169-182.
分类 | 关键字 | 描述 |
---|---|---|
顶点数据 | v | 几何体顶点三维坐标 |
vt | 顶点对应贴图坐标 | |
vn | 顶点法线 | |
元素 | p | 点 |
l | 线 | |
f | 面 | |
成组 | g | 组名 |
渲染 | usemtl | 材质名 |
mtllib | 材质库 |
表1 OBJ关键字
Table 1 OBJ keywords
分类 | 关键字 | 描述 |
---|---|---|
顶点数据 | v | 几何体顶点三维坐标 |
vt | 顶点对应贴图坐标 | |
vn | 顶点法线 | |
元素 | p | 点 |
l | 线 | |
f | 面 | |
成组 | g | 组名 |
渲染 | usemtl | 材质名 |
mtllib | 材质库 |
图19 测试作品展示及完成时间((a)测试参考图;(b)三维建模效果;(c)作品完成时间)
Fig. 19 Display of test works ((a) Test reference diagram; (b) 3D modeling effects; (c) Completion time of the work)
图21 用户体验分析((a)学习难易度;(b)交互直观性;(c)操作复杂度;(d)建模自由度)
Fig. 21 User experience analysis ((a) Learning difficulty value; (b) Interactive intuitiveness; (c) Operation complexity; (d) DoF of Modeling)
方法对比 | 人机交互 | 建模方法 | 工作效率 | 缺陷与不足 |
---|---|---|---|---|
本文方法 | 沉浸式交互,建模过程直观,易于非专业人员学习掌握 | 跟随用柄轨迹生成模型,通过模型组合表达创意更轻松 | 直观便捷的交互过程和网络协同的支持,能够提高工作效率 | 网格编辑、UV与渲染机制不完善,VR设备长时间佩戴易劳累 |
传统方法 | 桌面式交互,建模过程抽象,专业性强 | 具备完善的网格编辑、UV、渲染机制,建模自由度高 | 交互过程复杂抽象提高了学习成本,工作效率相对不高 | 建模过程复杂、学习难度大,不支持远程协作 |
表2 三维建模方法对比
Table 2 Comparison of 3D modeling methods
方法对比 | 人机交互 | 建模方法 | 工作效率 | 缺陷与不足 |
---|---|---|---|---|
本文方法 | 沉浸式交互,建模过程直观,易于非专业人员学习掌握 | 跟随用柄轨迹生成模型,通过模型组合表达创意更轻松 | 直观便捷的交互过程和网络协同的支持,能够提高工作效率 | 网格编辑、UV与渲染机制不完善,VR设备长时间佩戴易劳累 |
传统方法 | 桌面式交互,建模过程抽象,专业性强 | 具备完善的网格编辑、UV、渲染机制,建模自由度高 | 交互过程复杂抽象提高了学习成本,工作效率相对不高 | 建模过程复杂、学习难度大,不支持远程协作 |
资源项 | CPU 利用率/ % | GPU 利用率/ % | 内存 占用率/ % | WIFI 吞吐量/ Kbps |
---|---|---|---|---|
系统未运行 | 3 | 1 | 16 | 0 |
运行空闲时 | 20 | 85 | 27 | 10 |
建模工作时 | 40 | 86 | 28 | 100 |
表3 系统负载测试
Table 3 System load testing
资源项 | CPU 利用率/ % | GPU 利用率/ % | 内存 占用率/ % | WIFI 吞吐量/ Kbps |
---|---|---|---|---|
系统未运行 | 3 | 1 | 16 | 0 |
运行空闲时 | 20 | 85 | 27 | 10 |
建模工作时 | 40 | 86 | 28 | 100 |
[1] | SHERIDAN T B. Interaction, imagination and immersion some research needs[C]// The ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2000: 1-7. |
[2] |
FUNKHOUSER T, KAZHDAN M, SHILANE P, et al. Modeling by example[J]. ACM Transactions on Graphics, 2004, 23(3): 652-663.
DOI URL |
[3] | LEE J, FUNKHOUSER T. Sketch-based search and composition of 3D models[C]// The 5th Eurographics Conference on Sketch-Based Interfaces and Modeling. New York: ACM, 2008: 97-104. |
[4] | IGARASHI T, HUGHES J F. A suggestive interface for 3D drawing[C]// The 14th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2001: 173-181. |
[5] | 孙正兴, 冯桂焕, 周若鸿. 基于草图的人机交互技术研究进展[J]. 计算机辅助设计与图形学学报, 2005, 17(9): 1889-1899. |
SUN Z X, FENG G H, ZHOU R H. Techniques for sketch-based user interface: review and research[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(9): 1889-1899 (in Chinese). | |
[6] | 胡事民, 杨永亮, 来煜坤. 数字几何处理研究进展[J]. 计算机学报, 2009, 32(8): 1451-1469. |
HU S M, YANG Y L, LAI Y K. Research progress of digital geometry processing[J]. Chinese Journal of Computers, 2009, 32(8): 1451-1469 (in Chinese). | |
[7] | WANG Y Z, ZHENG J W, WANG H. Fast mesh simplification method for three-dimensional geometric models with feature-preserving efficiency[J]. Scientific Programming, 2019, 2019: 4926190. |
[8] |
LIU X P, LIN L P, WU J, et al. Generating sparse self-supporting wireframe models for 3D printing using mesh simplification[J]. Graphical Models, 2018, 98: 14-23.
DOI URL |
[9] |
王永志, 李振朝, 刘鹏彧, 等. 基于能量算子的三维空间实体LOD建模方法[J]. 系统仿真学报, 2022, 34(2): 247-257.
DOI |
WANG Y Z, LI Z C, LIU P Y, et al. LOD modeling method for three-dimensional objects with energy operator[J]. Journal of System Simulation, 2022, 34(2): 247-257 (in Chinese).
DOI |
|
[10] | EBNER T, SCHREER O, FELDMANN I. Fully automated highly accurate 3D reconstruction from multiple views[C]// 2017 IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 2528-2532. |
[11] | SHARP N, CRANE K. A Laplacian for nonmanifold triangle meshes[J]. Computer Graphics Forum, 2020, 39(5): 69-80. |
[12] |
FOTI D, GIORNO S, DURAISAMY K. An adaptive mesh refinement approach based on optimal sparse sensing[J]. Theoretical and Computational Fluid Dynamics, 2020, 34(4): 457-482.
DOI |
[13] |
DOSOVITSKIY A, SPRINGENBERG J T, TATARCHENKO M, et al. Learning to generate chairs, tables and cars with convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 692-705.
DOI PMID |
[14] | WU Z J, WANG X, LIN D, et al. SAGNet: structure-aware generative network for 3D-shape modeling[J]. ACM Transactions on Graphics, 2019, 38(4): 91:1-91:14. |
[15] |
GADELHA M, RAI A, MAJI S, et al. Inferring 3D shapes from image collections using adversarial networks[J]. International Journal of Computer Vision, 2020, 128(10-11): 2651-2664.
DOI |
[16] | ROSALES E, ARAÚJO C, RODRIGUEZ J, et al. AdaptiBrush: adaptive general and predictable VR ribbon brush[J]. ACM Transactions on Graphics, 2021, 40(6): 247:1-247:15. |
[17] | WANG J Y, WANG Y Y, ZHANG N, et al. The key to the future development of interactive art - virtual reality technology[J]. J Multim Inf Syst, 2018, 5: 277-282. |
[18] |
FEEMAN S M, WRIGHT L B, SALMON J L. Exploration and evaluation of CAD modeling in virtual reality[J]. Computer-Aided Design and Applications, 2018, 15(6): 892-904.
DOI URL |
[19] |
BECKER M W, SCHUETZ J W. An introduction to ground-water modeling using virtual reality modeling language (VRML)[J]. Journal of Geoscience Education, 2003, 51(5): 506-511.
DOI URL |
[20] |
SCHNACK A, WRIGHT M J, HOLDERSHAW J L. Does the locomotion technique matter in an immersive virtual store environment? - Comparing motion-tracked walking and instant teleportation[J]. Journal of Retailing and Consumer Services, 2021, 58: 102266.
DOI URL |
[21] |
BOVIM L P, GJESDAL B E, MÆLAND S, et al. The impact of motor task and environmental constraints on gait patterns during treadmill walking in a fully immersive virtual environment[J]. Gait & Posture, 2020, 77: 243-249.
DOI URL |
[22] |
TIAN J, ZHANG W L, ZHANG T, et al. Research status of gesture recognition based on vision: a review[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(4): 042019.
DOI |
[23] | SAKAMOTO M, SHINODA T, ISHIZU T, et al. A proposal of interactive projection mapping using kinect[C]// 2018 International Conference on Information and Communication Technology Robotics. New York: IEEE Press, 2018: 1-4. |
[24] | 张维, 林泽一, 程坚, 等. 动态手势理解与交互综述[J]. 软件学报, 2021, 32(10): 3051-3067. |
ZHANG W, LIN Z Y, CHENG J, et al. Survey of dynamic hand gesture understanding and interaction[J]. Journal of Software, 2021, 32(10): 3051-3067 (in Chinese). | |
[25] |
王珊, 沈旭昆, 赵沁平. 三维人脸表情获取及重建技术综述[J]. 系统仿真学报, 2018, 30(7): 2423-2444.
DOI |
WANG S, SHEN X K, ZHAO Q P. Review of 3D facial expression acquisition and modeling technology[J]. Journal of System Simulation, 2018, 30(7): 2423-2444 (in Chinese).
DOI |
|
[26] | 胡春花, 陈晓梅, 陈仕鸿. 虚拟现实技术在儿童室内火灾逃生教育中的应用研究[J]. 系统仿真学报, 2016, 28(4): 934-939. |
HU C H, CHEN X M, CHEN S H. Application research on children’s indoor fire escape education system based on virtual reality technology[J]. Journal of System Simulation, 2016, 28(4): 934-939 (in Chinese). | |
[27] | 谭力恒, 蒋秉川, 李锋, 等. 面向沉浸式虚拟现实的数字地球交互漫游方法[J/OL]. 计算机辅助设计与图形学学报, 2023: 1-15. (2023-04-23). https://kns.cnki.net/kcms/detail/11.2925.TP.20230423.1604.004.html. |
TAN L H, JIANG B C, LI F, et al. Immersive virtual reality oriented interactive exploration of digital earth[J/OL]. Journal of Computer-Aided Design & Computer Graphics, 2023: 1-15. (2023-04-23). https://kns.cnki.net/kcms/detail/11.2925.TP.202 30423.1604.004.html (in Chinese). | |
[28] |
ZHAO W R, SU L P, DOU F J. Designing virtual reality based 3D modeling and interaction technologies for museums[J]. Heliyon, 2023, 9(6): e16486.
DOI URL |
[29] | 徐森. 基于手势交互的复杂装配系统三维建模软件设计研究[D]. 南京: 南京邮电大学, 2022. |
XU S. Research on 3D modeling software design of complex assembly system based on gesture interaction[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022 (in Chinese). | |
[30] | 刘喜明, 郑国勤, 孙家广. 基于C/S模式的同步协同设计运行机制和策略[J]. 计算机工程与应用, 2001, 37(15): 64-67. |
LIU X M, ZHENG G Q, SUN J G. Mechanism and strategy of synchronous cooperative design based on client/server mode[J]. Computer Engineering and Applications, 2001, 37(15): 64-67 (in Chinese). | |
[31] |
NAM T J, WRIGHT D. The development and evaluation of Syco3D: a real-time collaborative 3D CAD system[J]. Design Studies, 2001, 22(6): 557-582.
DOI URL |
[32] | 先志宏, 陈小安, 林建德, 等. 基于特征模型的网络实时协同建模技术[J]. 重庆大学学报: 自然科学版, 2003, 26(12): 25-28. |
XIAN Z H, CHEN X A, LIN J D, et al. A realtime collaborative modeling technology based on feature model over Internet[J]. Journal of Chongqing University: Natural Science Edition, 2003, 26(12): 25-28 (in Chinese). | |
[33] | 周余斌, 罗天洪. 网络协同设计下的三维建模技术[J]. 重庆大学学报, 2008, 31(9): 1038-1043. |
ZHOU Y B, LUO T H. 3D modeling based on Internet collaborative design[J]. Journal of Chongqing University, 2008, 31(9): 1038-1043 (in Chinese). |
[1] | 严家豪, 吕健, 侯宇康, 莫心祝. 虚拟现实中眼动交互频率对视觉疲劳影响的研究[J]. 图学学报, 2024, 45(3): 528-538. |
[2] | 黄家晖, 穆太江. 动态三维场景重建研究综述[J]. 图学学报, 2024, 45(1): 14-25. |
[3] | 韩兆阳, 翁冬冬, 郭署山, 贺文杰, 江海燕, 李冬. 一种基于简易标记点编码的光学跟踪系统[J]. 图学学报, 2023, 44(5): 997-1012. |
[4] | 谢红霞, 胡毓宁, 张赟, 王亚奇, 杜辉, 秦爱红. 全景图像视频的场景分析与内容处理方法综述[J]. 图学学报, 2023, 44(4): 640-657. |
[5] | 岳明宇, 高希峰, 毕重科. 三维建筑模型的低模网格生成[J]. 图学学报, 2023, 44(4): 764-774. |
[6] | 朱永宁 , 葛 婷 , 杜盛瑀 , 楼泽如 , 王建民 . 虚拟现实全景流体绘画系统的可用性研究[J]. 图学学报, 2021, 42(5): 833-840. |
[7] | 赵建军, 黄竣鹏, 陈俊良. 基于 Leap Motion 的电影前期预演 人机交互方法[J]. 图学学报, 2021, 42(1): 71-78. |
[8] | 郑明钰, 李家和, 张 晗, 骆岩林, 申佳丽, 朱小明. 支持力反馈的沉浸式物理学习环境的构建 [J]. 图学学报, 2021, 42(1): 79-86. |
[9] | 滕 健, 黄佳慧, 宫 凯 . 基于 BCI 的虚拟现实模拟驾驶教学系统设计[J]. 图学学报, 2020, 41(2): 217-223. |
[10] | 邱远航 1, 孙贤波 1, 刘勇弟 1, 蔡正清 1, 徐宏勇 2 . 污水处理厂虚拟现实教学软件开发及应用[J]. 图学学报, 2020, 41(2): 233-236. |
[11] | 林莹莹, 蔡睿凡, 朱雨真, 唐祥峻, 金小刚. 基于Leap Motion 的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65. |
[12] | 王 茹, 权超超 . 公路立交 BIM 参数化快速精确建模方法研究[J]. 图学学报, 2019, 40(4): 766-770. |
[13] | 李 祥 1,2, 王学文 1,2, 谢嘉成 1,2, 乔春光 1,2, 杨兆建 1,2 . 复杂工况下采运装备虚拟运行关键技术研究[J]. 图学学报, 2019, 40(2): 403-409. |
[14] | 姜立军1,2, 李建余1, 李哲林1,2, 吴章鸿1, 张 瑜1. 虚拟骑行中的三种导航界面的体验度量[J]. 图学学报, 2018, 39(3): 515-521. |
[15] | 冯桂珍1, 池建斌1, 邢海军1, 张增强1, 贾 双2. 基于Unity3D 的减速器虚拟拆装实验[J]. 图学学报, 2018, 39(2): 304-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||