图学学报 ›› 2024, Vol. 45 ›› Issue (3): 564-574.DOI: 10.11996/JG.j.2095-302X.2024030564
收稿日期:
2023-10-10
接受日期:
2024-01-25
出版日期:
2024-06-30
发布日期:
2024-06-12
通讯作者:
刘思濛(1988-),女,工程师,博士。主要研究方向为先进制造技术、CAD/CAM。E-mail:liusimeng@chd.edu.cn第一作者:
王刚锋(1983-),男,高级工程师,博士。主要研究方向为数字化设计与制造、工程机械智能化。E-mail:wanggf@chd.edu.cn
基金资助:
WANG Gangfeng1(), ZHANG Huan1, LIU Simeng1(
), YUE Ping2, ZHANG Dong1
Received:
2023-10-10
Accepted:
2024-01-25
Published:
2024-06-30
Online:
2024-06-12
First author:
WANG Gangfeng (1983-), senior engineer, Ph.D. His main research interests cover digital design and manufacturing, intelligent construction machinery. E-mail:wanggf@chd.edu.cn
Supported by:
摘要:
针对工程机械驱动桥装配序列规划中缺乏基于知识的推理决策,难以实现复杂产品智能化装配的问题,提出一种基于语义工艺知识的装配序列规划方法。构建了驱动桥装配语义工艺知识信息模型,表达子装配体层级结构信息、属性信息和装配语义信息。通过建立装配序列规划本体,并将SWRL规则引入装配本体,研究了工艺知识的语义表示和推理决策。采用Neo4j构建驱动桥工艺知识图谱,实现了典型结构子装配体装配序列快速识别。通过量化零件几何、物理属性和装配工艺信息对装配效率的影响,生成装配权重序列,并利用SWRL规则迭代修正形成非典型结构子装配体装配序列。以某型号压路机驱动桥装配序列生成与仿真,验证了该方法的可行性,为知识驱动的复杂产品装配序列规划提供参考。
中图分类号:
王刚锋, 张寰, 刘思濛, 岳萍, 张栋. 基于语义工艺知识的驱动桥装配序列规划研究[J]. 图学学报, 2024, 45(3): 564-574.
WANG Gangfeng, ZHANG Huan, LIU Simeng, YUE Ping, ZHANG Dong. Research on drive axle assembly sequence planning based on semantic process knowledge[J]. Journal of Graphics, 2024, 45(3): 564-574.
序号 | SWRL规则 | 描述 |
---|---|---|
Rule-1 | Has_Assembly_Constraint (?x, ar_1:partially_constraint) ->Has_Assembly_Relationship(?x, ar:assembly_relationship) | 对于某个零件是否含有装配约束中的部分约束ar_1: partially_constraint,如果有该部分约束,即推理该零件具有装配约束关系 |
Rule-2 | Has_Mating_Constraint(?x, ar_2:concentric) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:concentric) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含同心装配约束ar_2: concentric特征时,即具有毗邻关系 |
Rule-3 | Has_Mating_Constraint(?x, ar_2:alignment) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:alignment) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含接触对齐ar_2: alignment特征时,即具有毗邻关系 |
Rule-4 | Has_Mating_Constraint(?x, ar_2:angel) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:angel) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含角度ar_2: angel特征时,即具有毗邻关系 |
Rule-5 | Has_Mating_Constraint(?x, ar_2:fixed) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:fixed) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含固定约束ar_2: fixed特征时,即具有毗邻关系 |
Rule-6 | Has_Mating_Constraint(?x, ar_2:lock) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:lock) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含锁定约束ar_2: lock特征时,即具有毗邻关系 |
Rule-7 | Has_Mating_Constraint(?x, ar_2:vertical) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:vertical) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含垂直约束ar_2: vertical特征时,即具有毗邻关系 |
Rule-8 | Has_Part_Type(?x, pt:shaft) ^ Has_Mating_Constraint(?x, ar_2:alignment) ->Has_Sequential_Order(?x, prior_assembly) | 某个零件属于轴系零件时,且有接触对齐约束ar_2: alignment特征时,则该零件优先装配 |
Rule-9 | Has_Assembly_Relationship(?x, ag:assembly_group) ->Has_Sequential_Order(?x, prior_assembly) | 某个零件有非本装配体的装配关系ag: assembly_group,则该零件有优先装配关系 |
表1 装配序列规划语义规则
Table 1 Semantic rules of assembly sequence planning
序号 | SWRL规则 | 描述 |
---|---|---|
Rule-1 | Has_Assembly_Constraint (?x, ar_1:partially_constraint) ->Has_Assembly_Relationship(?x, ar:assembly_relationship) | 对于某个零件是否含有装配约束中的部分约束ar_1: partially_constraint,如果有该部分约束,即推理该零件具有装配约束关系 |
Rule-2 | Has_Mating_Constraint(?x, ar_2:concentric) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:concentric) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含同心装配约束ar_2: concentric特征时,即具有毗邻关系 |
Rule-3 | Has_Mating_Constraint(?x, ar_2:alignment) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:alignment) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含接触对齐ar_2: alignment特征时,即具有毗邻关系 |
Rule-4 | Has_Mating_Constraint(?x, ar_2:angel) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:angel) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含角度ar_2: angel特征时,即具有毗邻关系 |
Rule-5 | Has_Mating_Constraint(?x, ar_2:fixed) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:fixed) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含固定约束ar_2: fixed特征时,即具有毗邻关系 |
Rule-6 | Has_Mating_Constraint(?x, ar_2:lock) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:lock) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含锁定约束ar_2: lock特征时,即具有毗邻关系 |
Rule-7 | Has_Mating_Constraint(?x, ar_2:vertical) ^ Has_Same_Feature_Position(?x, ?y) ^ Has_Mating_Constraint(?y, ar_2:vertical) ->Has_Sequential_Order(?y, neighbourship) | 2个零件在具有相同几何面特征关系时,还包含垂直约束ar_2: vertical特征时,即具有毗邻关系 |
Rule-8 | Has_Part_Type(?x, pt:shaft) ^ Has_Mating_Constraint(?x, ar_2:alignment) ->Has_Sequential_Order(?x, prior_assembly) | 某个零件属于轴系零件时,且有接触对齐约束ar_2: alignment特征时,则该零件优先装配 |
Rule-9 | Has_Assembly_Relationship(?x, ag:assembly_group) ->Has_Sequential_Order(?x, prior_assembly) | 某个零件有非本装配体的装配关系ag: assembly_group,则该零件有优先装配关系 |
图5 典型结构子装配体知识图谱构建((a)零件;(b)子装配体;(c)零件与零件的关系;(d)零件与子装配体的关系)
Fig. 5 Construction of knowledge graph for typical structure sub-assembly ((a) Parts; (b) Sub-assemblies; (c) Relationship between parts; (d) The relationship between parts and sub-assemblies)
名称 | 数值 | 特征值f(xm) | 名称 | 装配工艺信息 | 特征值f(xn) |
---|---|---|---|---|---|
质量(M)/kg | 0~0.2 | 1-5M | 约束形式 | 共轴/距离/插入 | 0.6 |
0.2~5.0 | 0 | 共向 | 0.45 | ||
5.0~10.0 | 0.2M-1 | 螺栓连接 | 0.5 | ||
>10.0 | 1 | 铆接/焊接 | 1 | ||
尺寸(S)/mm | 0~50 | 1-0.02S | 配合形式 | 间隙配合 | 0 |
50~500 | 0 | 过渡配合 | 0.05T (力矩/kN·m) | ||
>500 | 1.25-0.0005S | 过盈配合 | 1 | ||
数量(Q)/个 | 1~2 | 0 | 装配操作方式 | 零件被平放在某零件上 | 0.2 |
3~4 | 0.2Q | 零件被装填在某零件上 | 0.4 | ||
零件被配对在某零件上 | 0.6 | ||||
>5 | 1 | 零件被插入在某零件上 | 0.8 | ||
零件被扭在某零件上 | 1 |
表2 零件特征值查询表
Table 2 Part eigenvalue query table
名称 | 数值 | 特征值f(xm) | 名称 | 装配工艺信息 | 特征值f(xn) |
---|---|---|---|---|---|
质量(M)/kg | 0~0.2 | 1-5M | 约束形式 | 共轴/距离/插入 | 0.6 |
0.2~5.0 | 0 | 共向 | 0.45 | ||
5.0~10.0 | 0.2M-1 | 螺栓连接 | 0.5 | ||
>10.0 | 1 | 铆接/焊接 | 1 | ||
尺寸(S)/mm | 0~50 | 1-0.02S | 配合形式 | 间隙配合 | 0 |
50~500 | 0 | 过渡配合 | 0.05T (力矩/kN·m) | ||
>500 | 1.25-0.0005S | 过盈配合 | 1 | ||
数量(Q)/个 | 1~2 | 0 | 装配操作方式 | 零件被平放在某零件上 | 0.2 |
3~4 | 0.2Q | 零件被装填在某零件上 | 0.4 | ||
零件被配对在某零件上 | 0.6 | ||||
>5 | 1 | 零件被插入在某零件上 | 0.8 | ||
零件被扭在某零件上 | 1 |
图12 驱动桥主减速器子装配体序列规划过程((a)装配权重序列;(b)修正序列1;(c)修正序列2;(d)修正序列3;(e)修正序列4;(f)修正序列5)
Fig. 12 Sequence planning process of drive axle main reducer sub-assembly ((a) Assembly weight sequence; (b) Modified sequence 1; (c) Modified sequence 2; (d) Modified sequence 3; (e) Modified sequence 4; (f) Modified sequence 5)
图13 驱动桥装配序列仿真((a)差速器子装配体A;(b)主减速器子装配体B)
Fig. 13 Assembly sequence simulation of drive axle ((a) Differential sub-assembly A; (b) Main reducer sub-assembly B)
[1] |
余海东, 高畅, 赵勇, 等. 机械产品装配偏差分析方法研究进展与展望[J]. 机械工程学报, 2023, 59(9): 212-229.
DOI |
YU H D, GAO C, ZHAO Y, et al. Progress and prospect on assembly deviation propagation of mechanical products[J]. Journal of Mechanical Engineering, 2023, 59(9): 212-229. (in Chinese).
DOI |
|
[2] |
郝博, 徐东平, 王明阳, 等. 基于改进遗传算法的机翼装配序列智能规划[J]. 组合机床与自动化加工技术, 2021(6): 135-137, 140.
DOI |
HAO B, XU D P, WANG M Y, et al. Intelligent planning of aircraft wing assembly sequence based on improved genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(6):135-137, 140 (in Chinese). | |
[3] | 崔若梁, 颜伟, 孙佳旭. 复杂产品混合ASP和ALB问题研究[J]. 现代制造工程, 2022(11): 1-7. |
CUI R L, YAN W, SUN J X. Research on the hybrid ASP and ALB problem of complex products[J]. Modern Manufacturing Engineering, 2022(11): 1-7 (in Chinese). | |
[4] | ABDULLAH M A, AB RASHID M F F, GHAZALLI Z. Optimization of assembly sequence planning using soft computing approaches: a review[J]. Archives of Computational Methods in Engineering, 2019, 26(2): 461-474. |
[5] | 管超, 张则强, 李云鹏, 等. 一种求解双层过道布置问题的离散花授粉算法[J]. 华南理工大学学报: 自然科学版, 2019, 47(10): 60-74. |
GUAN C, ZHANG Z Q, LI Y P, et al. A discrete flower pollination algorithm for solving double-layer corridor allocation problem[J]. Journal of South China University of Technology: Natural Science Edition, 2019, 47(10): 60-74 (in Chinese). | |
[6] | 李丽丽, 高智勇, 高建民, 等. 航空发动机风扇转子动叶的选配优化技术研究[J]. 西安交通大学学报, 2021, 55(9): 60-70. |
LI L L, GAO Z Y, GAO J M, et al. Selecting-matching optimization technology of fan rotor blades of aircraft engine[J]. Journal of Xi'an Jiaotong University, 2021, 55(9): 60-70 (in Chinese). | |
[7] | 谢立, 刘政, 张继君, 等. 蚁群算法在宽弦风扇叶片优化排序中的应用[J]. 航空动力学报, 2021, 36(8): 1680-1689. |
XIE L, LIU Z, ZHANG J J, et al. Application of ant colony algorithm in wide-chord fan blade sequencing optimization[J]. Journal of Aerospace Power, 2021, 36(8): 1680-1689 (in Chinese). | |
[8] | 印宇珂, 郑银环, 周斌, 等. 基于拆卸法的SA-GA混合算法的装配规划研究[J]. 现代制造工程, 2023(5): 15-21, 57. |
YIN Y K, ZHENG Y H, ZHOU B, et al. Research on assembly planning of SA-GA hybrid algorithm based on disassembly method[J]. Modern Manufacturing Engineering, 2023(5): 15-21, 57 (in Chinese). | |
[9] | 宁伟航, 刘检华, 熊辉, 等. 基于案例推理和词移距离的复杂产品装配现场技术问题管控方法[J]. 计算机集成制造系统, 2022, 28(3): 663-675. |
NING W H, LIU J H, XIONG H, et al. On-site technical problem control method of complex product assembly process using case-based reasoning and word mover’s distance[J]. Computer Integrated Manufacturing Systems, 2022, 28(3): 663-675 (in Chinese). | |
[10] | 吴婷, 魏旭. CBR方法在船舶分段装配工艺设计的应用[J]. 舰船科学技术, 2020, 42(2): 220-222. |
WU T, WEI X. Process design of ship section assembly based on CBR[J]. Ship Science and Technology, 2020, 42(2): 220-222 (in Chinese). | |
[11] | 陈俊皓, 贾晓亮. 基于实例学习的飞机装配序列智能规划方法[J]. 航空制造技术, 2022, 65(12): 77-85. |
CHEN J H, JIA X L. An approach for aircraft assembly sequence intelligent planning based on case learning[J]. Aeronautical Manufacturing Technology, 2022, 65(12): 77-85 (in Chinese). | |
[12] | 张志英, 江志斌. 基于规则推理的自动船体装配工艺生成方法[J]. 上海交通大学学报, 2007, 41(1): 31-35. |
ZHANG Z Y, JIANG Z B. Approach on automation method of hull assembly process based on rule reasoning[J]. Journal of Shanghai Jiaotong University, 2007, 41(1): 31-35 (in Chinese). | |
[13] | SON C. Intelligent rule-based sequence planning algorithm with fuzzy optimization for robot manipulation tasks in partially dynamic environments[J]. Information Sciences, 2016, 342: 209-221. |
[14] | 王静, 周来水, 毕建平, 等. 基于模糊与规则推理的注塑模具顶针智能化设计系统[J]. 塑料科技, 2018, 46(2): 88-92. |
WANG J, ZHOU L S, BI J P, et al. Intelligent design system of injection mold top pin based on fuzzy and rule reasoning[J]. Plastics Science and Technology, 2018, 46(2): 88-92 (in Chinese). | |
[15] |
马国辉, 田凌, 刘思超, 等. 基于知识工程的船体焊接工艺研究[J]. 图学学报, 2020, 41(3): 430-437.
DOI |
MA G H, TIAN L, LIU S C, et al. Research on hull welding techniques based on knowledge engineering[J]. Journal of Graphics, 2020, 41(3): 430-437 (in Chinese). | |
[16] | SHI X L, TIAN X T, WANG G F, et al. Semantic-based subassembly identification considering non-geometric structure attributes and assembly process factors[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(1): 439-455. |
[17] | ZHU D S, ZHANG Z J, SHI L L, et al. A hierarchical assembly knowledge representation framework and microdevice assembly ontology[J]. Advanced Engineering Informatics, 2022, 53: 101705. |
[18] |
焦东风, 刘志峰. 低成本低噪声的驱动桥零部件精度优化方法[J]. 中国机械工程, 2020, 31(20): 2505-2511.
DOI |
JIAO D F, LIU Z F. Precision optimization of driving axle parts for low cost and low noise[J]. China Mechanical Engineering, 2020, 31(20): 2505-2511 (in Chinese).
DOI |
|
[19] | WANG Y W, YANG J Y, GUO D, et al. Vibration and sound radiation analysis of the final drive assembly considering the gear-shaft coupling dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(7-8): 1258-1275. |
[20] |
王姝婷, 刘晓冰, 周军华, 等. 基于本体的复杂产品维修工程案例知识表示及重用方法[J]. 系统工程与电子技术, 2022, 44(2): 557-568.
DOI |
WANG S T, LIU X B, ZHOU J H, et al. Ontology based knowledge representation and reuse method for complex product maintenance engineering cases[J]. Systems Engineering and Electronics, 2022, 44(2): 557-568 (in Chinese).
DOI |
[1] | 何柳, 安然, 刘姝妍, 李润岐, 陶剑, 曾照洋. 基于知识图谱的航空多模态数据组织与知识发现技术研究[J]. 图学学报, 2024, 45(2): 300-307. |
[2] | 张一鸣, 刘金锋, 陈亚杰, 瞿鹏飞, 景旭文, 刘晓军. 零件加工隐性工艺知识获取方法研究[J]. 图学学报, 2024, 45(2): 399-408. |
[3] | 陈逸天, 张玮, 谭思危, 朱融晨, 王毅超, 朱闽峰, 陈为. 历史人物群体对比可视化[J]. 图学学报, 2023, 44(6): 1227-1238. |
[4] | 汪玉金, 谢 诚, 余蓓蓓, 向鸿鑫, 柳 青. 属性语义与图谱语义融合增强的 零次学习图像识别[J]. 图学学报, 2021, 42(6): 899-907. |
[5] | 宋建炜 , 邓逸川 , 苏 成 , . 基于预训练语言模型的建筑施工安全事故文本的命名实体识别研究[J]. 图学学报, 2021, 42(2): 307-315. |
[6] | 董玉德, 姚亮亮, 刘 振, 曹文钢, 邓 磊, 王凯亮, 刘月在. 大马力拖拉机驱动桥有限元分析及试验研究[J]. 图学学报, 2012, 33(3): 24-28. |
[7] | 张学忱, 张 涛, 张慧波. CA1040P90L2轻型货车驱动桥设计[J]. 图学学报, 2011, 32(6): 5-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||