欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (4): 631-649.DOI: 10.11996/JG.j.2095-302X.2024040631

• 综述 • 上一篇    下一篇

室外大场景神经辐射场综述

董相涛1(), 马鑫1, 潘成伟2, 鲁鹏1()   

  1. 1.北京邮电大学人工智能学院,北京 100876
    2.北京航空航天大学人工智能研究院,北京 100191
  • 收稿日期:2023-11-22 接受日期:2024-02-03 出版日期:2024-08-31 发布日期:2024-09-02
  • 通讯作者:鲁鹏(1978-),男,副教授,博士。主要研究方向为计算机图形学与计算机视觉等。E-mail:lupeng@bupt.edu.cn
  • 第一作者:董相涛(1998-),男,硕士研究生。主要研究方向为计算机视觉与三维重建。E-mail:dxt185@bupt.edu.cn

A review of neural radiance fields for outdoor large scenes

DONG Xiangtao1(), MA Xin1, PAN Chengwei2, LU Peng1()   

  1. 1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
    2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
  • Received:2023-11-22 Accepted:2024-02-03 Published:2024-08-31 Online:2024-09-02
  • Contact: LU Peng (1978-), associate professor, Ph.D. His main research interests cover computer graphics and computer vision, etc. E-mail:lupeng@bupt.edu.cn
  • First author:DONG Xiangtao (1998-), master student. His main research interests cover computer vision and 3D reconstruction. E-mail:dxt185@bupt.edu.cn

摘要:

对室外大场景进行三维建模,不仅可以完成实时的城市建图和漫游,还能为自动驾驶等提供技术支持。近年来,神经隐式建模的发展十分迅速,神经辐射场(NeRF)的出现更是将神经隐式建模推上了新的高度。NeRF凭借高质量渲染和任意角度渲染的特点,已经在可控编辑、数字化人体、城市场景重建等领域得到了广泛的应用。NeRF通过深度学习的方法从二维图片及其位姿中学习隐式三维场景,生成新视角图像。然而原始NeRF只能在有界场景下得到逼真的结果,在对室外大场景进行建模时,往往会面临无界背景、模型容量、场景外观等问题。基于室外大场景中NeRF部署的多个角度改进和多样的NeRF变种,首先介绍NeRF的背景,然后从室外大场景的难点切入,对各个难点的解决方法进行分析和讨论,最后对室外大场景NeRF目前的进展进行总结并对未来进行展望。

关键词: 神经隐式表达, 神经辐射场, 新视角合成, 室外场景, 大场景

Abstract:

The 3D modeling of large outdoor scenes can not only complete real-time urban mapping and roaming, but also provide technical support for autonomous driving. In recent years, the advancement of neural implicit representation has been rapid, and the emergence of the neural radiance fields (NeRF) has propelled neural implicit representation to a new height. With its characteristics of high-quality rendering and arbitrary angle rendering, NeRF has been widely applied in controllable editing, digital human body, urban scene reconstruction, and other fields. The neural radiance field utilizes deep learning methods to learn implicit three-dimensional scenes from two-dimensional pictures and their poses, synthesizing novel view images.However, the original NeRF can only yield realistic results in bounded scenes, posing challenges in modeling large outdoor scenes due to problems such as unbounded backgrounds, model capacity constraints, and scene appearance. In order to deploy NeRF in large outdoor scenes, researchers have improved from multiple angles and proposed a variety of NeRF variants. Our review will begin by introducing the background of neural radiance fields, then delve into the challenges specific to the large outdoor scenes, analyzing and discussing the solutions to each, before concluding with a summary of current progress of NeRF for large outdoor scenes and prospects for the future.

Key words: neural implicit representation, neural radiance field, novel view synthesis, outdoor scenes, large scenes

中图分类号: