图学学报 ›› 2025, Vol. 46 ›› Issue (1): 13-27.DOI: 10.11996/JG.j.2095-302X.2025010013
收稿日期:
2024-07-11
接受日期:
2024-09-12
出版日期:
2025-02-28
发布日期:
2025-02-14
第一作者:
崔克彬(1979-),男,副教授,博士。主要研究方向为数字图像处理与模式识别。E-mail:ncepuckb@163.com
CUI Kebin1,2(), GENG Jiachang1
Received:
2024-07-11
Accepted:
2024-09-12
Published:
2025-02-28
Online:
2025-02-14
First author:
CUI Kebin (1979-), associate professor, Ph.D. His main research interests cover digital image processing and pattern recognition. E-mail:ncepuckb@163.com
摘要:
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。
中图分类号:
崔克彬, 耿佳昌. 基于EE-YOLOv8s的多场景火灾迹象检测算法[J]. 图学学报, 2025, 46(1): 13-27.
CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s[J]. Journal of Graphics, 2025, 46(1): 13-27.
名称 | 版本号 |
---|---|
Operating System | Windows 11系统 |
CPU | 12th Gen Intel(R) Core(TM) i5-12400F @2.50 GHz |
显卡(GPU) | NVIDIA GeForce RTX 4060 Ti (16380 MiB) |
Pytorch | torch - 1.13.1 + cu117 |
GPU accleration CUDA | CUDA 11.7 + cuDNN v8.9.6 |
Programming Language | Python - 3.9.19 |
表1 实验环境配置
Table 1 Configuration of experimental environment
名称 | 版本号 |
---|---|
Operating System | Windows 11系统 |
CPU | 12th Gen Intel(R) Core(TM) i5-12400F @2.50 GHz |
显卡(GPU) | NVIDIA GeForce RTX 4060 Ti (16380 MiB) |
Pytorch | torch - 1.13.1 + cu117 |
GPU accleration CUDA | CUDA 11.7 + cuDNN v8.9.6 |
Programming Language | Python - 3.9.19 |
Group | 主干网络 | P/% | R/% | mAP0.50/% | mAP0.75/% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|
① | CSPDarkNets | 83.6 | 80.2 | 89.5 | 71.8 | 62.9 | 11.14 | 28.6 | 120.78 |
② | EfficientNetv2s | 85.7 | 84.0 | 88.4 | 72.4 | 66.3 | 18.03 | 40.7 | 44.73 |
③ | EfficientViT M4 | 83.1 | 75.5 | 85.7 | 66.6 | 58.3 | 10.45 | 26.4 | 83.68 |
④ | RepViT M 1.1 | 85.6 | 84.3 | 90.9 | 62.3 | 58.9 | 9.93 | 28.1 | 74.37 |
⑤ | FasterNet T1 | 82.3 | 76.0 | 86.1 | 67.7 | 59.3 | 9.40 | 25.5 | 106.63 |
⑥ | EfficientNetEasy | 85.2 | 87.8 | 89.6 | 67.3 | 60.0 | 11.07 | 27.9 | 114.96 |
表2 主干网络对比实验
Table 2 Comparative experiments on backbone networks
Group | 主干网络 | P/% | R/% | mAP0.50/% | mAP0.75/% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|
① | CSPDarkNets | 83.6 | 80.2 | 89.5 | 71.8 | 62.9 | 11.14 | 28.6 | 120.78 |
② | EfficientNetv2s | 85.7 | 84.0 | 88.4 | 72.4 | 66.3 | 18.03 | 40.7 | 44.73 |
③ | EfficientViT M4 | 83.1 | 75.5 | 85.7 | 66.6 | 58.3 | 10.45 | 26.4 | 83.68 |
④ | RepViT M 1.1 | 85.6 | 84.3 | 90.9 | 62.3 | 58.9 | 9.93 | 28.1 | 74.37 |
⑤ | FasterNet T1 | 82.3 | 76.0 | 86.1 | 67.7 | 59.3 | 9.40 | 25.5 | 106.63 |
⑥ | EfficientNetEasy | 85.2 | 87.8 | 89.6 | 67.3 | 60.0 | 11.07 | 27.9 | 114.96 |
Group | 空间金字塔池化模块 | P% | R% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
① | SPPF | 83.6 | 80.2 | 62.9 | 11.14 | 28.6 | 120.78 |
② | SPPCSPC[ | 83.6 | 78.9 | 61.7 | 17.55 | 33.6 | 124.97 |
③ | SPPFCSPC | 83.3 | 80.5 | 63.6 | 17.55 | 33.6 | 116.72 |
④ | SPPF_LSKA | 88.5 | 80.4 | 64.6 | 12.20 | 29.3 | 122.80 |
⑤ | SPPELAN | 83.1 | 84.6 | 64.4 | 10.67 | 27.9 | 117.12 |
⑥ | SPP_LSKA_ELAN | 88.3 | 85.1 | 66.4 | 12.45 | 29.3 | 115.46 |
表3 空间金字塔池化对比实验
Table 3 Comparative experiments with spatial pyramid pooling modules
Group | 空间金字塔池化模块 | P% | R% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
① | SPPF | 83.6 | 80.2 | 62.9 | 11.14 | 28.6 | 120.78 |
② | SPPCSPC[ | 83.6 | 78.9 | 61.7 | 17.55 | 33.6 | 124.97 |
③ | SPPFCSPC | 83.3 | 80.5 | 63.6 | 17.55 | 33.6 | 116.72 |
④ | SPPF_LSKA | 88.5 | 80.4 | 64.6 | 12.20 | 29.3 | 122.80 |
⑤ | SPPELAN | 83.1 | 84.6 | 64.4 | 10.67 | 27.9 | 117.12 |
⑥ | SPP_LSKA_ELAN | 88.3 | 85.1 | 66.4 | 12.45 | 29.3 | 115.46 |
图10 空间金字塔池化实验对比图
Fig. 10 Comparison of spatial pyramid pooling module experiments ((a) Original; (b) Labeled; (c) SPPF; (d) SPPCSPC; (e) SPPFCSPC; (f) SPPF_LSKA; (g) SPPELAN; (h) SPP_LSKA_ELAN)
Group | Backbone | Head | SPPF | Neck | P% | R% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|---|
① | - | - | - | - | 83.6 | 80.2 | 62.9 | 11.14 | 28.6 | 120.78 |
② | √ | - | - | - | 85.2 | 87.8 | 60.0 | 11.07 | 27.9 | 114.96 |
③ | - | √ | - | - | 85.9 | 85.8 | 65.8 | 6.36 | 33.1 | 99.45 |
④ | - | - | √ | - | 88.3 | 85.1 | 66.4 | 12.45 | 29.3 | 115.46 |
⑤ | - | - | - | √ | 84.9 | 79.9 | 63.0 | 11.43 | 26.0 | 128.72 |
⑥ | √ | √ | - | - | 85.6 | 87.9 | 61.8 | 5.98 | 34.6 | 112.25 |
⑦ | √ | √ | √ | - | 89.3 | 90.5 | 70.0 | 12.31 | 38.2 | 89.97 |
⑧ | √ | √ | √ | √ | 90.4 | 87.5 | 68.3 | 9.63 | 37.5 | 103.32 |
表4 消融实验
Table 4 Ablation experiments with different modules
Group | Backbone | Head | SPPF | Neck | P% | R% | mAP/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|---|
① | - | - | - | - | 83.6 | 80.2 | 62.9 | 11.14 | 28.6 | 120.78 |
② | √ | - | - | - | 85.2 | 87.8 | 60.0 | 11.07 | 27.9 | 114.96 |
③ | - | √ | - | - | 85.9 | 85.8 | 65.8 | 6.36 | 33.1 | 99.45 |
④ | - | - | √ | - | 88.3 | 85.1 | 66.4 | 12.45 | 29.3 | 115.46 |
⑤ | - | - | - | √ | 84.9 | 79.9 | 63.0 | 11.43 | 26.0 | 128.72 |
⑥ | √ | √ | - | - | 85.6 | 87.9 | 61.8 | 5.98 | 34.6 | 112.25 |
⑦ | √ | √ | √ | - | 89.3 | 90.5 | 70.0 | 12.31 | 38.2 | 89.97 |
⑧ | √ | √ | √ | √ | 90.4 | 87.5 | 68.3 | 9.63 | 37.5 | 103.32 |
Model | Backbone | P% | R% | mAP0.50/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
YOLOv5 | CSPDarknet | 85.1 | 80.5 | 88.9 | 7.06 | 16.0 | 125.84 |
YOLOv6 | EfficientRep[ | 77.5 | 72.3 | 83.5 | 4.63 | 11.3 | 124.08 |
YOLOX | CSPDarknet-53 | 79.4 | 82.8 | 84.7 | 8.94 | 26.8 | 83.44 |
YOLOv7-tiny | CSPDarknet-53 | 82.8 | 83.6 | 84.1 | 6.02 | 13.2 | 116.38 |
DETR | ResNet-50 | 51.3 | 70.4 | 87.4 | 41.28 | 124.2 | 45.33 |
YOLOv8s | CSPDarknet | 83.6 | 80.2 | 89.5 | 11.14 | 28.6 | 120.78 |
YOLOv10s | CSPDarknet | 83.8 | 78.8 | 88.1 | 8.07 | 24.8 | 174.63 |
RT-DETR-L | ResNet-18 | 89.6 | 88.0 | 94.5 | 32.00 | 107.7 | 73.96 |
Ours | EfficientNetEasy | 90.4 | 87.5 | 94.6 | 9.63 | 37.5 | 103.32 |
表5 主流模型对比实验
Table 5 Comparative experiments with mainstream models
Model | Backbone | P% | R% | mAP0.50/% | Param/106 | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
YOLOv5 | CSPDarknet | 85.1 | 80.5 | 88.9 | 7.06 | 16.0 | 125.84 |
YOLOv6 | EfficientRep[ | 77.5 | 72.3 | 83.5 | 4.63 | 11.3 | 124.08 |
YOLOX | CSPDarknet-53 | 79.4 | 82.8 | 84.7 | 8.94 | 26.8 | 83.44 |
YOLOv7-tiny | CSPDarknet-53 | 82.8 | 83.6 | 84.1 | 6.02 | 13.2 | 116.38 |
DETR | ResNet-50 | 51.3 | 70.4 | 87.4 | 41.28 | 124.2 | 45.33 |
YOLOv8s | CSPDarknet | 83.6 | 80.2 | 89.5 | 11.14 | 28.6 | 120.78 |
YOLOv10s | CSPDarknet | 83.8 | 78.8 | 88.1 | 8.07 | 24.8 | 174.63 |
RT-DETR-L | ResNet-18 | 89.6 | 88.0 | 94.5 | 32.00 | 107.7 | 73.96 |
Ours | EfficientNetEasy | 90.4 | 87.5 | 94.6 | 9.63 | 37.5 | 103.32 |
Model | Dataset | P% | R% | mAP/% | Param/106 | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8s | VOC(2012) | 70.22 | 60.29 | 49.29 | 11.13 | 28.5 |
COCO(Class7) | 87.69 | 67.37 | 67.92 | 11.12 | 28.5 | |
EE-YOLOv8s | VOC(2012) | 72.27 | 60.11 | 50.17 | 9.63 | 37.6 |
COCO(Class7) | 87.76 | 69.09 | 68.07 | 9.63 | 37.5 |
表6 模型泛化性验证对比实验
Table 6 Comparative experiments for model generalizability validation
Model | Dataset | P% | R% | mAP/% | Param/106 | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8s | VOC(2012) | 70.22 | 60.29 | 49.29 | 11.13 | 28.5 |
COCO(Class7) | 87.69 | 67.37 | 67.92 | 11.12 | 28.5 | |
EE-YOLOv8s | VOC(2012) | 72.27 | 60.11 | 50.17 | 9.63 | 37.6 |
COCO(Class7) | 87.76 | 69.09 | 68.07 | 9.63 | 37.5 |
Model | Deployment efficiency | Resource consumption | ||
---|---|---|---|---|
FPS | Load time/ms | GFLOPS | Memory/MB | |
YOLOv8 | 120.78 | 39.94 | 11.14 | 57.0 |
EE-YOLOv8 | 103.32 | 48.97 | 9.63 | 53.3 |
表7 模型部署对比
Table 7 Table of model deployment comparison
Model | Deployment efficiency | Resource consumption | ||
---|---|---|---|---|
FPS | Load time/ms | GFLOPS | Memory/MB | |
YOLOv8 | 120.78 | 39.94 | 11.14 | 57.0 |
EE-YOLOv8 | 103.32 | 48.97 | 9.63 | 53.3 |
[1] | PARK S, HAN K W, LEE K. A study on fire detection technology through spectrum analysis of smoke particles[C]// 2020 International Conference on Information and Communication Technology Convergence. New York: IEEE Press, 2020: 1563-1565. |
[2] | XAVIER K L B L, NANAYAKKARA V K. Development of an early fire detection technique using a passive infrared sensor and deep neural networks[J]. Fire Technology, 2022, 58(6): 3529-3552. |
[3] | KIM Y H, KIM A, JEONG H Y. RGB color model based the fire detection algorithm in video sequences on wireless sensor network[J]. International Journal of Distributed Sensor Networks, 2014, 10(4): 1-10. |
[4] | 肖潇, 孔凡芝, 刘金华. 基于动静态特征的监控视频火灾检测算法[J]. 计算机科学, 2019, 46(S1): 284-286, 299. |
XIAO X, KONG F Z, LIU J H. Monitoring video fire detection algorithm based on dynamic characteristics and static characteristics[J]. Computer Science, 2019, 46(S1): 284-286, 299 (in Chinese). | |
[5] | HASHEMZADEH M, ZADEMEHDI A. Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features[J]. Expert Systems with Applications, 2019, 130: 60-78. |
[6] | 刘树东, 姚文渤, 张艳. 雾天条件下基于机器视觉的森林火灾监测[J]. 计算机工程与科学, 2020, 42(7): 1253-1261. |
LIU S D, YAO W B, ZHANG Y. Forest fire monitoring based on machine vision in foggy weather[J]. Computer Engineering & Science, 2020, 42(7): 1253-1261 (in Chinese). | |
[7] | PAN J, OU X M, XU L. A collaborative region detection and grading framework for forest fire smoke using weakly supervised fine segmentation and lightweight faster-RCNN[J]. Forests, 2021, 12(6): 768. |
[8] |
皮骏, 刘宇恒, 李久昊. 基于YOLOv5s的轻量化森林火灾检测算法研究[J]. 图学学报, 2023, 44(1): 26-32.
DOI |
PI J, LIU Y H, LI J H. Research on lightweight forest fire detection algorithm based on YOLOv5s[J]. Journal of Graphics, 2023, 44(1): 26-32 (in Chinese).
DOI |
|
[9] | 赵辉, 赵尧, 金林林, 等. 基于YOLOX的小目标烟火检测技术研究与实现[J]. 图学学报, 2022, 43(5): 783-790. |
ZHAO H, ZHAO Y, JIN L L, et al. Research and realization of small target smoke and fire detection technology based on YOLOX[J]. Journal of Graphics, 2022, 43(5): 783-790 (in Chinese). | |
[10] | LI A, ZHAO Y Q, ZHENG Z X. Novel recursive BiFPN combining with swin transformer for wildland fire smoke detection[J]. Forests, 2022, 13(12): 2032. |
[11] | KIM S Y, MUMINOV A. Forest fire smoke detection based on deep learning approaches and unmanned aerial vehicle images[J]. Sensors, 2023, 23(12): 5702. |
[12] | LI C D, LI G Y, SONG Y C, et al. Fast forest fire detection and segmentation application for UAV-assisted mobile edge computing system[J]. IEEE Internet of Things Journal, 2024, 11(16): 26690-26699. |
[13] | HUANG J W, ZHOU J S, YANG H Z, et al. A small-target forest fire smoke detection model based on deformable transformer for end-to-end object detection[J]. Forests, 2023, 14(1): 162. |
[14] | JIN L, YU Y Q, ZHOU J N, et al. SWVR: a lightweight deep learning algorithm for forest fire detection and recognition[J]. Forests, 2024, 15(1): 204. |
[15] | XU Y Q, LI J M, ZHANG L, et al. CNTCB-YOLOv7: an effective forest fire detection model based on ConvNeXtV2 and CBAM[J]. Fire, 2024, 7(2): 54. |
[16] | DILSHAD N, KHAN S U, ALGHAMDI N S, et al. Toward efficient fire detection in IoT environment: a modified attention network and large-scale data set[J]. IEEE Internet of Things Journal, 2024, 11(8): 13467-13481. |
[17] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[18] | TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2104.00298. |
[19] | LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14420-14430. |
[20] | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-05-10]. https://arxiv.org/abs/1905.11946. |
[21] | WANG A, CHEN H, LIN Z J, et al. RepVIT: revisiting mobile CNN from ViT perspective[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2307.09283. |
[22] | WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14408-14419. |
[23] | OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[24] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-04-10]. https://arxiv.org/abs/2402.13616. |
[25] | LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352. |
[26] | YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[EB/OL]. [2024-04-05]. https://proceedings.mlr.press/v139/yang21o.html. |
[27] | WANG M, JIANG L C, YUE P, et al. FASDD: an open-access 100,000-level flame and smoke detection dataset for deep learning in fire detection[EB/OL]. [2024-04-05]. https://doi. org/10.5194/essd-2023-73. |
[28] | CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031. |
[29] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-04-19]. https://arxiv.org/abs/2209.02976. |
[30] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |
[31] | ZHAO Y, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2024-04-19]. https://arxiv.org/abs/2304.08069. |
[32] | WENG K H, CHU X X, XU X M, et al. EfficientRep: an efficient repvgg-style ConvNets with hardware-aware neural network design[EB/OL]. [2024-04-19]. https://arxiv.org/abs/2302.00386. |
[1] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[2] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
[3] | 张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453. |
[4] | 李利霞, 王鑫, 王军, 张又元. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666. |
[5] | 李小波, 李阳贵, 郭宁, 范震. 融合注意力机制的YOLOv5口罩检测算法[J]. 图学学报, 2023, 44(1): 16-25. |
[6] | 赵 辉 , 赵 尧 , 金林林 , 董兰芳 , 肖 潇 . 基于 YOLOX 的小目标烟火检测技术 研究与实现[J]. 图学学报, 2022, 43(5): 783-790. |
[7] | 胡俊, 顾晶晶, 王秋红. 基于遥感图像的多模态小目标检测[J]. 图学学报, 2022, 43(2): 197-204. |
[8] | 蒋镕圻, 彭月平, 谢文宣, 谢郭蓉. 嵌入 scSE 模块的改进 YOLOv4 小目标检测算法[J]. 图学学报, 2021, 42(4): 546-555. |
[9] | 杨大慎 1, 陈科圻 2,3, 马翠霞 2,3 . 一种面向无人机视频的多尺度摘要的设计与实现[J]. 图学学报, 2020, 41(2): 224-232. |
[10] | 周立旺1, 潘天翔 1, 杨泽曦 2, 王 斌 1. 多阶段优化的小目标聚焦检测[J]. 图学学报, 2020, 41(1): 93-99. |
[11] | 卞景帅 1, 卢家品 1, 罗月童 1, 张 敏 2 . 基于 Faster-RCNN 的结核杆菌自动检测方法 研究与应用[J]. 图学学报, 2019, 40(3): 608-615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||