[1] |
罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
|
|
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. SCIENTIA SINICA Informationis, 2022, 52(6): 1002-1039 (in Chinese).
|
[2] |
疏义桂. 基于机器视觉的铝塑泡罩包装药品缺陷检测[D]. 武汉: 华中科技大学, 2013.
|
|
SHU Y G. Research on detection of medicines in aluminum- plastic blister package based on machine vision[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese).
|
[3] |
谷紫颖. 铝塑泡罩药品缺陷检测技术的研究[D]. 济南: 山东大学, 2020.
|
|
GU Z Y. Research on defect detection technology of aluminum- plastic blister medicine[D]. Jinan: Shandong University, 2020 (in Chinese).
|
[4] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
|
|
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708 (in Chinese).
|
[5] |
李炳臻, 姜文志, 顾佼佼, 等. 基于卷积神经网络的目标检测算法综述[J]. 计算机与数字工程, 2022, 50(5): 1010-1017.
|
|
LI B Z, JIANG W Z, GU J J, et al. Review of target detection algorithms based on deep learning[J]. Computer & Digital Engineering, 2022, 50(5): 1010-1017 (in Chinese).
|
[6] |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 63.
|
[7] |
王素琴, 任琪, 石敏, 等. 基于异常检测的产品表面缺陷检测与分割[J]. 图学学报, 2022, 43(3): 377-386.
|
|
WANG S Q, REN Q, SHI M, et al. Product surface defect detection and segmentation based on anomaly detection[J]. Journal of Graphics, 2022, 43(3): 377-386 (in Chinese).
DOI
|
[8] |
张玥, 陈锡伟, 陈梦丹, 等. 基于对比学习生成对抗网络的无监督工业品表面异常检测[J]. 电子测量与仪器学报, 2023, 37(10): 193-201.
|
|
ZHANG Y, CHEN X W, CHEN M D, et al. Unsupervised surface anomaly detection of industrial products based on contrastive learning generative adversarial network[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(10): 193-201 (in Chinese).
|
[9] |
杜娟, 杨钧植. 基于迁移学习的小样本连接器缺陷检测方法[J]. 自动化与信息工程, 2022, 43(5): 1-7.
|
|
DU J, YANG J Z. Small-sample connector defect detection method based on transfer learning[J]. Automation & Information Engineering, 2022, 43(5): 1-7 (in Chinese).
|
[10] |
翟永杰, 胡哲东, 白云山, 等. 融合迁移学习的绝缘子缺陷分级检测方法[J]. 电子测量技术, 2023, 46(6): 23-30.
|
|
ZHAI Y J, HU Z D, BAI Y S, et al. Integrating transfer learning for insulator defect grading detection[J]. Electronic Measurement Technology, 2023, 46(6): 23-30 (in Chinese).
|
[11] |
XIAO W W, SONG K C, LIU J, et al. Graph embedding and optimal transport for few-shot classification of metal surface defect[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5010310.
|
[12] |
丁鹏, 卢文壮, 刘杰, 等. 基于生成对抗网络的叶片表面缺陷图像数据增强[J]. 组合机床与自动化加工技术, 2022(7): 18-21.
DOI
|
|
DING P, LU W Z, LIU J, et al. Image data augmentation of blade surface defects based on generative adversarial network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(7): 18-21 (in Chinese).
|
[13] |
李可, 祁阳, 宿磊, 等. 基于改进ACGAN的钢表面缺陷视觉检测方法[J]. 机械工程学报, 2022, 58(24): 32-40.
DOI
|
|
LI K, QI Y, SU L, et al. Visual inspection of steel surface defects based on improved auxiliary classification generation adversarial network[J]. Journal of Mechanical Engineering, 2022, 58(24): 32-40 (in Chinese).
DOI
|
[14] |
JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6: 27.
|
[15] |
WANG T, LI Y, KANG B Y, et al. The devil is in classification: a simple framework for long-tail instance segmentation[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 728-744.
|
[16] |
ZHANG Y H, HUANG C, LOY C C. FASA: feature augmentation and sampling adaptation for long-tailed instance segmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3437-3446.
|
[17] |
CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9260-9269.
|
[18] |
LI B, YAO Y Q, TAN J R, et al. Equalized focal loss for dense long-tailed object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 6980-6989.
|
[19] |
胡海涛, 杜昊晨, 王素琴, 等. 改进YOLOX的药品泡罩铝箔表面缺陷检测方法[J]. 图学学报, 2022, 43(5): 803-814.
|
|
HU H T, DU H C, WANG S Q, et al. Improved YOLOX method for detecting surface defects of drug blister aluminum foil[J]. Journal of Graphics, 2022, 43(5): 803-814 (in Chinese).
|
[20] |
王健, 肖迪, 冯李航, 等. 基于改进YOLOv8s的PCB小目标缺陷检测模型[EB/OL]. (024-08-20) [2024-09-08]http://kns.cnki.net/kcms/detail/11.2127.tp.20240819.1152.016.html.
|
|
WANG J, XIAO D, FENG L H. A PCB small object defect detection model based on improved YOLOv8s[EB/OL]. (2024-08-20) [2024-09-08]http://kns.cnki.net/kcms/detail/11.2127.tp.20240819.1152.016.html (in Chinese).
|
[21] |
李文举, 苏攀, 崔柳. 基于随机扰动的过拟合抑制算法[J]. 计算机仿真, 2022, 39(5): 134-138.
|
|
LI W J, SU P, CUI L. Over-fitting suppression algorithm based on random perturbation[J]. Computer Simulation, 2022, 39(5): 134-138 (in Chinese).
|
[22] |
LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1763.
|
[23] |
TAN J R, LU X, ZHANG G, et al. Equalization loss v2: a new gradient balance approach for long-tailed object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1685-1694.
|
[24] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475.
|
[25] |
WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL]. (2024-10-30) [2024-12-10]https://arxiv.org/abs/2405.14458.
|