图学学报 ›› 2025, Vol. 46 ›› Issue (3): 676-685.DOI: 10.11996/JG.j.2095-302X.2025030676
胡昕洋1(
), 王鹏飞1, 曾琼1, 蒋鹏2, 辛士庆1(
), 屠长河1
收稿日期:2024-07-08
接受日期:2024-11-04
出版日期:2025-06-30
发布日期:2025-06-13
通讯作者:辛士庆(1979-),男,教授,博士。主要研究方向为计算图形学、机器人路径规划和三维智能检测等。E-mail:xinshiqing@sdu.edu.cn第一作者:胡昕洋(1999-),男,硕士研究生。主要研究方向为计算机图形学。E-mail:1219569379@qq.com
基金资助:
HU Xinyang1(
), WANG Pengfei1, ZENG Qiong1, JIANG Peng2, XIN Shiqing1(
), TU Changhe1
Received:2024-07-08
Accepted:2024-11-04
Published:2025-06-30
Online:2025-06-13
Contact:
XIN Shiqing (1979-), professor, Ph.D. His main research interests cover computer graphics, robotic path planning and 3D intelligent inspection, etc. Email:xinshiqing@sdu.edu.cnFirst author:HU Xinyang (1999-), master student. His main research interest covers computer graphics. E-mail:1219569379@qq.com
Supported by:摘要:
由三维地质建模方法得到的地质模型在各类工程领域中扮演着不可或缺的角色。现有的建模方法通常通过空间数据插值来划分地下不同岩性的区域,但此类方法在保持拓扑一致性方面存在挑战,限制了三维模型的可靠性和实用性。为了构造地质区域中的不连续结构,提出了一种基于维诺图方法自动生成三维地层界面模型的方法。首先将钻井数据离散成一系列散点,建立维诺图并提取出不同岩性区域的分界面,然后通过对分界面上的顶点建立线性系统并求解,来得到分界面的变形结果。此外,引入了空间变形控制算法,使得模型在表现地质层断层、褶皱等复杂构造特征时更为精确,从而提升了三维模型在实际应用中的表现能力。该方法解决了传统建模方法对于复杂地质构造会出现的建模拓扑错误问题,且具有较高的自动化程度和较强的鲁棒性。尤其在面对不规则数据集时,表现出了优异的适应性,极大减少了模型调整所需的人工干预。在实际工程数据上的实验表明,所建立的模型具有较好的地质合理性,并可重建出其他方法难以建模出的非流形结构。
中图分类号:
胡昕洋, 王鹏飞, 曾琼, 蒋鹏, 辛士庆, 屠长河. 基于维诺图的三维钻孔建模算法[J]. 图学学报, 2025, 46(3): 676-685.
HU Xinyang, WANG Pengfei, ZENG Qiong, JIANG Peng, XIN Shiqing, TU Changhe. Voronoi diagram-based algorithm for 3D borehole modeling[J]. Journal of Graphics, 2025, 46(3): 676-685.
图1 维诺图及其对应的德劳内三角化((a)点pi及其相应的维诺图单元ci,二维维诺图由所有单元的边缘构成;(b)点pi作为顶点的德劳内三角化)
Fig. 1 Voronoi diagram and its corresponding Delaunay triangulation ((a) Point pi and its corresponding Voronoi cell ci, the 2D Voronoi diagram is composed of the edges of all cells; (b) The Delaunay triangulation with points pi)
图2 方法流程((a)输入为不同岩性的柱状钻孔剖面;(b)点数据离散化后构建维诺图,提取异色相邻面;(c)在提取面上添加特征点作为拉普拉斯变形控制点;(d)求解线性方程确定地层边界,得到最终变形结果)
Fig. 2 Method work flow ((a) Input is a cylindrical borehole profile with different lithologies; (b) After discretizing the borehole data into point data, a Voronoi diagram is constructed to extract faces where adjacent sites have different colors; (c) Feature points are identified and added to the extracted faces as control points for Laplacian deformation; (d) Layer boundaries are determined by solving a system of linear equations to obtain the deformation result)
图3 钻孔数据的重采样(左图:原始钻孔数据。点Pi (X)代表第i个钻孔上地层X底部的边界点。右图:重采样后。边界两侧的采样点与其距离相同,距离为 ?)
Fig. 3 Resampling of drill core data (Left image: original drill core data. Point Pi (X) represents the boundary point at the bottom of stratum X on the i-th drill core. Right image: after resampling. The sampling points on both sides of the boundary are equidistant, with a distance of ?)
图4 设置约束点的规则如下:本方法在维诺图上指定2种类型的顶点作为约束点。类型一包括原始钻孔上的地层边界点(如V1),类型二包括与3个或更多区域等距离的顶点(如V2)
Fig. 4 The rules for setting constraint points are as follows: This method specifies two types of vertices as constraint points on the Voronoi diagram. Type one includes the stratum boundary points on the original drill cores (e.g., V1), and type two includes the vertices equidistant from three or more regions (e.g., V2)
图5 二维情况下的实验((a)输入网格由162个顶点构成,顶点间两两相邻,包含有4个红色约束点。为了突出表示顶点的对应关系,在其中选择了一些顶点放大显示;(b)非约束点的位置权重为0;(c)非约束点的位置权重为1e-3)
Fig. 5 Experiments in 2D ((a) The input mesh consists of 162 vertices, with every pair of vertices being adjacent, and contains four red constraint points. To highlight the correspondence of vertices, some vertices are magnified; (b) The position weight of non-constraint points is 0; (c) The position weight of non-constraint points is 1e-3)
图6 三维钻孔建模结果((a)包含40根钻孔的输入数据可视化;(b)对离散后的钻孔点数据建立维诺图;(c)对维诺图进行细分;(d)构建并求解线性方程组,更新网格的顶点位置得到分界面结果)
Fig. 6 3D drill core modeling results ((a) Visualization of the input data containing 40 drill cores; (b) Construction of the Voronoi diagram from the discretized drill core point data; (c) Subdivision of the Voronoi diagram; (d) Construction and solution of the system of linear equations to update the vertex positions of the mesh, resulting in the boundary interface)
图7 三维建模结果((a)输入包含9根钻孔;(b)孤立区域导致建立维诺图后,分界面上出现非流形边结构;(c)进行变形前,将非流形边上顶点设置为约束点;(d)变形后得到了平滑的尖灭结构)
Fig. 7 3D Modeling results ((a) Input consisting of nine boreholes; (b) Non-manifold edge structures emerging on interfaces due to isolated regions after Voronoi diagram construction; (c) Vertices on non-manifold edges are designated as constraint points prior to deformation; (d) Smoothed pinch-out structure obtained after deformation)
图8 从二维上对方法的拓扑结构保留能力做了实验((a)~(d)对分层结构、尖灭结构、透镜体结构和断层结构选取具有代表性的二维截面来进行建模)
Fig. 8 Experiments were conducted to test the method’s ability to preserve topological structures in 2D ((a)~(d) Representative 2D cross-sections of layered structures, pinch-out structures, lens structures, and fault structures were selected for modeling)
| 实验用例 | 三角面片数量/ K | 运行时间/ms |
|---|---|---|
| 用例1 | 10 | 295 |
| 50 | 1549 | |
| 100 | 3614 | |
| 用例2 | 10 | 113 |
| 50 | 963 | |
| 100 | 2368 |
表1 本算法建模时间表
Table 1 The modeling time schedule of this algorithm
| 实验用例 | 三角面片数量/ K | 运行时间/ms |
|---|---|---|
| 用例1 | 10 | 295 |
| 50 | 1549 | |
| 100 | 3614 | |
| 用例2 | 10 | 113 |
| 50 | 963 | |
| 100 | 2368 |
| [1] | LI X, ZHENG D H, FENG M, et al. Information geography: the information revolution reshapes geography[J]. Science China Earth Sciences, 2022, 65(2): 379-382. |
| [2] | WANG G W, HUANG L. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang province, China[J]. Geoscience Frontiers, 2012, 3(4): 483-491. |
| [3] | ZHANG X Y, ZHANG J Q, TIAN Y P, et al. Urban geological 3D modeling based on papery borehole log[J]. ISPRS International Journal of Geo-Information, 2020, 9(6): 389. |
| [4] | WANG J M, ZHAO H, BI L, et al. Implicit 3D modeling of ore body from geological boreholes data using hermite radial basis functions[J]. Minerals, 2018, 8(10): 443. |
| [5] | LU G Y, WONG D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008, 34(9): 1044-1055. |
| [6] | BOISSONNAT J D, CAZALS F. Natural neighbor coordinates of points on a surface[J]. Computational Geometry, 2001, 19(2/3): 155-173. |
| [7] | HILLIER M J, SCHETSELAAR E M, DE KEMP E A, et al. Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions[J]. Mathematical Geosciences, 2014, 46(8): 931-953. |
| [8] | GUO J T, WANG J M, WU L X, et al. Explicit-implicit- integrated 3-D geological modelling approach: a case study of the Xianyan Demolition Volcano (Fujian, China)[J]. Tectonophysics, 2020, 795: 228648. |
| [9] | DE KEMP E A. Visualization of complex geological structures using 3-D Bézier construction tools[J]. Computers & Geosciences, 1999, 25(5): 581-597. |
| [10] | POPOVS K, SAKS T, JĀTNIEKS J. A comprehensive approach to the 3D geological modelling of sedimentary basins: example of Latvia, the central part of the Baltic Basin[J]. Estonian Journal of Earth Sciences, 2015, 64(2): 173-188. |
| [11] | LYU M M, REN B Y, WU B P, et al. A parametric 3D geological modeling method considering stratigraphic interface topology optimization and coding expert knowledge[J]. Engineering Geology, 2021, 293: 106300. |
| [12] | OLIVER M A, WEBSTER R. A tutorial guide to geostatistics: computing and modelling variograms and kriging[J]. CATENA, 2014, 113: 56-69. |
| [13] | RIVOIRARD J. Which models for collocated cokriging ?[J]. Mathematical Geology, 2001, 33(2): 117-131. |
| [14] | MARINONI O. Improving geological models using a combined ordinary-indicator kriging approach[J]. Engineering Geology, 2003, 69(1/2): 37-45. |
| [15] | GAUS I, KINNIBURGH D G, TALBOT J C, et al. Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging[J]. Environmental Geology, 2003, 44(8): 939-948. |
| [16] | CALCAGNO P, CHILÈS J P, COURRIOUX G, et al. Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1/4): 147-157. |
| [17] | SMIRNOFF A, BOISVERT E, PARADIS S J. Support vector machine for 3D modelling from sparse geological information of various origins[J]. Computers & Geosciences, 2008, 34(2): 127-143. |
| [18] | GONÇALVES Í G, KUMAIRA S, GUADAGNIN F. A machine learning approach to the potential-field method for implicit modeling of geological structures[J]. Computers & Geosciences, 2017, 103: 173-182. |
| [19] | AVALOS S, ORTIZ J M. Geological modeling using a recursive convolutional neural networks approach[EB/OL]. [2024-05-08]https://arxiv.org/abs/1904.12190. |
| [20] | OKABE A, BOOTS B, SUGIHARA K, et al. Spatial tessellations: concepts and applications of Voronoi diagrams[M]. 2nd ed. New York: Wiley, 2000: 72-75. |
| [21] | GAVRILOVA M L, ROKNE J. Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space[J]. Computer Aided Geometric Design, 2003, 20(4): 231-242. |
| [22] | LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm[M]// WOLFE R. Seminal Graphics: Pioneering Efforts That Shaped the Field. New York: ACM, 1998: 347-353. |
| [23] | JU T, LOSASSO F, SCHAEFER S, et al. Dual contouring of hermite data[C]// The 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2002: 339-346. |
| [24] | TURNER A K. Challenges and trends for geological modelling and visualisation[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(2): 109-127. |
| [25] |
LI J, LIU P R, WANG X Y, et al. 3D geological implicit modeling method of regular voxel splitting based on layered interpolation data[J]. Scientific Reports, 2022, 12(1): 13840.
DOI PMID |
| [26] | DAI H L, LIU Z, HU J P. Multi-scale 3D geological digital representation and modeling method based on octree algorithm[C]// The 6th International Conference on Wireless Communications Networking and Mobile Computing. New York: IEEE Press, 2010: 1-3. |
| [27] | WU L X. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system[J]. Computers & Geosciences, 2004, 30(4): 405-418. |
| [28] | GONG J Y, CHENG P G, WANG Y D. Three-dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences, 2004, 30(4): 391-404. |
| [29] | CAUMON G, GRAY G, ANTOINE C, et al. Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of La Popa Basin, NE Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1613-1621. |
| [30] | SHI W Z. Development of a hybrid model for three- dimensional GIS[J]. Geo-Spatial Information Science, 2000, 3(2): 6-12. |
| [31] | TAO J G. A new integrated data structure for 3D GIS based on CSG and TIN[C]// 2009 International Conference on Test and Measurement. New York: IEEE Press, 2009: 153-156. |
| [32] | 姚裕友, 张高峰, 徐本柱, 等. 变容量限制质心Power图的计算[J]. 图学学报, 2021, 42(3): 492-500. |
| YAO Y Y, ZHANG G F, XU B Z, et al. Computation method of variable capacity constrained centroidal Power diagram[J]. Journal of Graphics, 2021, 42(3): 492-500 (in Chinese). | |
| [33] | 孟宪海, 成文迪, 徐博, 等. 基于Voronoi最小邻近点集的Delaunay三角化方法[J]. 图学学报, 2013, 34(6): 36-41. |
| MENG X H, CHENG W D, XU B, et al. A Delaunay triangulation algorithm based on minimum Voronoi neighbors[J]. Journal of Graphics, 2013, 34(6): 36-41 (in Chinese). | |
| [34] | 张娟, 杜全叶. 增删点后的Voronoi图生成算法[J]. 图学学报, 2013, 34(1): 46-49. |
| ZHANG J, DU Q Y. The generating algorithm of Voronoi after adding and deleting points[J]. Journal of Graphics, 2013, 34(1): 46-49 (in Chinese). | |
| [35] | HERT S, SEEL M. dD convex hulls and Delaunay triangulations[EB/OL]. [2024-05-08]https://doc.cgal.org/5.6.1/Manual/index.html. |
| [36] | NEALEN A, IGARASHI T, SORKINE O, et al. Laplacian mesh optimization[C]// The 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. New York: ACM, 2006: 381-389. |
| [37] | SORKINE O, COHEN-OR D. Least-squares meshes[C]// The Shape Modeling Applications. New York: IEEE Press, 2004: 191-199. |
| [38] | GROSS M, BUSSOD G, GABLE C W, et al. Progress report on the development of a geologic framework model capability to support GDSA[R]. Los Alamos: Los Alamos National Laboratory, 2019. |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||