欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1113-1122.DOI: 10.11996/JG.j.2095-302X.2025051113

• 建筑与城市信息模型 • 上一篇    下一篇

基于YOLO和自然语言处理的施工方案智能审核方法

钱增志1(), 孙玉龙1, 张捷1, 夏侯遐迩2(), 周大兴1, 康伟德1   

  1. 1 中铁建设集团有限公司北京 100040
    2 东南大学土木工程学院江苏 南京 211189
  • 收稿日期:2025-01-26 接受日期:2025-04-10 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:夏侯遐迩(1988-),男,副教授,博士。主要研究方向为智能建造与运维(安全)管理等。E-mail:xhcmre@seu.edu.cn
  • 第一作者:钱增志(1973-),男,正高级工程师,硕士。主要研究方向为建筑工程与智能建造。E-mail:qianzengzhi.ztjs@crcc.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3804302);国家自然科学基金(72101054)

A construction plan intelligent review method based on YOLO and natural language processing

QIAN Zengzhi1(), SUN Yulong1, ZHANG Jie1, XIAHOU Xiaer2(), ZHOU Daxing1, KANG Weide1   

  1. 1 China Railway Construction Group Co., Ltd., Beijing 100040, China
    2 School of Civil Engineering, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2025-01-26 Accepted:2025-04-10 Published:2025-10-30 Online:2025-09-10
  • First author:QIAN Zengzhi (1973-), senior engineer, master. His main research interests cover construction engineering and intelligent construction. E-mail:qianzengzhi.ztjs@crcc.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFC3804302);National Natural Science Foundation of China(72101054)

摘要:

建筑施工方案的人工审核存在重复性高、耗时费力且占用专家资源等问题。为提升审核效率,促进企业智能建造发展,提出一种施工方案智能审核方法,通过审核规则编制、向量模型构建及图像文字识别技术结合,实现多类型方案智能审核。审核规则基于集团技术文件和历史审核意见样本,经历史高频审核意见筛选与专家研判后,采用正则表达式技术进行逐条编制。研究构建了基于语义相似度比对的审核模式,将方案文本内容嵌入向量空间,通过计算向量余弦相似度实现语义比对,从而提升审核灵活性与容错性。同时,引入基于YOLO的图像文字识别技术,处理文档图片中的文字内容,确保审核全覆盖。实验结果显示,系统平均审核准确率达90.4%,审核时间效率较人工提升87.9%,且能处理多种格式文本输入,具备良好鲁棒性,显著提高审核工作效率,对企业数字化转型与智能建造技术普及具有重要推动作用。目前,搭载此审核技术的平台已在集团多家分公司与项目应用测试,能生成准确的审核报告,实现审核效率显著提升。

关键词: 施工方案, 智能审核, 自然语言处理, 语义相似度, 图像文字识别

Abstract:

The manual review of construction plans in the building industry suffers from high repetitiveness, substantial time consumption, and extensive expert resource usage. To improve review efficiency and promote intelligent construction development, an intelligent construction plan review method was proposed, integrating review rule compilation, vector model construction, and image-text recognition to achieve intelligent review of multiple types of plans. The review rules were based on group technical documents and historical review samples, filtered through high-frequency historical review comments and expert judgment, then compiled item by item using regular expression technology. A review model based on semantic similarity comparison was constructed, embedding plan text content into vector space and implementing semantic comparison through vector cosine similarity calculation, thereby enhancing review flexibility and fault tolerance. Additionally, YOLO-based image text recognition technology was incorporated to process textual content in document images, ensuring comprehensive review coverage. Experimental results showed an average review accuracy of 90.4% and an 87.9% improvement in time efficiency compared to manual review. The system can process multiple text format inputs with robust performance, significantly improving review work efficiency and playing an important role in promoting enterprise digital transformation and the popularization of intelligent construction technology. Currently, the platform equipped with this review technology was tested in multiple branches and projects of the group, generating accurate review reports and delivering significant improvement in review efficiency.

Key words: construction plans, intelligent review, natural language processing, semantic similarity, image text recognition

中图分类号: