欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1144-1151.DOI: 10.11996/JG.j.2095-302X.2025051144

• 工业设计 • 上一篇    下一篇

基于图结构扩散模型的作业车间调度问题求解

余克雄(), 何鸿君, 易任娇, 赵航, 徐凯, 朱晨阳()   

  1. 国防科技大学计算机学院湖南 长沙 410000
  • 收稿日期:2025-01-26 接受日期:2025-03-13 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:朱晨阳(1990-),男,副教授,博士。主要研究方向为计算机图形学、计算机视觉等。E-mail:zhuchenyang07@nudt.edu.cn
  • 第一作者:余克雄(2000-),男,硕士研究生。主要研究方向为基于神经网络的组合优化。E-mail:yukexiong18@nudt.edu.cn
  • 基金资助:
    国家自然科学基金(62325221);国家自然科学基金(62132021);国家自然科学基金(62372457);湖南省自然科学基金(2021RC3071);湖南省自然科学基金(2022RC1104);国防科技大学研究资助项目(ZK22-52)

Graph-based diffusion solver for basic job-shop scheduling problem

YU Kexiong(), HE Hongjun, YI Renjiao, ZHAO Hang, XU Kai, ZHU Chenyang()   

  1. School of Computer Science, National University of Defense Technology, Changsha Hunan 410000, China
  • Received:2025-01-26 Accepted:2025-03-13 Published:2025-10-30 Online:2025-09-10
  • First author:YU Kexiong (2000-), master student. His main research interest covers machine learning for combinatorial optimization. E-mail:yukexiong18@nudt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62325221);National Natural Science Foundation of China(62132021);National Natural Science Foundation of China(62372457);Natural Science Foundation of Hunan Province of China(2021RC3071);Natural Science Foundation of Hunan Province of China(2022RC1104);NUDT Research Grants(ZK22-52)

摘要:

作业车间调度问题(JSSP)是经典的离线组合优化问题,广泛应用于工厂排产,物流配送等领域。作为NP-hard问题,其求解复杂度随作业和机器数量呈指数级增长。然而,传统的精确算法难以应对大规模实例,而现有的启发式和深度学习方法大多未能充分挖掘问题的全局信息,且通常仅能提供单一分布的解,难以满足组合优化问题的多解性。针对这一局限,提出了一种基于扩散概率模型的全局信息预测方法。首先,结合作业车间调度问题的特征和求解约束对扩散概率模型进行迁移,以预测表征最优解分布的概率图。随后,基于概率图的引导进行约束求解与局部搜索优化,充分发挥扩散概率模型的多模态生成优势与对全局信息的编码能力,从而获得符合问题约束的高质量调度方案。为进一步提升算法的求解效率,在国产深度学习框架Jittor上进行了迁移与重构,基于Jittor构建出一套高效的作业车间调度问题求解管线,并在网络推理速度上相较于Pytorch实现了最高40%的推理速度提升。在主流数据集上的实验结果表明,该方法在各类问题规模下均表现优异,取得了最佳的求解质量。据悉,这是首个基于扩散概率模型的作业车间调度问题求解器。

关键词: 作业车间调度问题, 扩散概率模型, 图神经网络, 组合优化, Jittor

Abstract:

The job-shop scheduling problem (JSSP) is a classic NP-hard combinatorial optimization problem with broad applications in manufacturing, logistics, and related domains. Due to its exponential computational complexity with increasing jobs and machines, traditional exact algorithms struggle with large-scale instances, while existing heuristic and deep learning-based methods often inadequately exploit global information. Furthermore, these approaches typically generate solutions from a single distribution, failing to capture the inherent multi-modality of combinatorial optimization problems. To address these limitations, we propose a novel global information prediction method based on diffusion probabilistic models. Our approach adapts the diffusion model to the structural constraints of JSSP, predicting a heatmap that represents the distribution of optimal solutions. Leveraging this heatmap, we perform constrained optimization and local search, effectively harnessing the model’s multi-modal generation capability and global information encoding. This results in high-quality, constraint-satisfying scheduling solutions. For enhanced computational efficiency, we implement our framework on the domestic deep learning platform Jittor, developing an optimized JSSP solving pipeline that achieves up to 40% faster inference than PyTorch. Extensive experiments on mainstream benchmarks demonstrate that our method outperforms existing approaches across varying problem scales, delivering state-of-the-art solution quality. To the best of our knowledge, this work presents the first diffusion-based solver for JSSP.

Key words: Job-shop scheduling problem, diffusion probabilistic model, graph neural network, combinatorial optimization, Jittor

中图分类号: