[1] |
王霄汉, 张霖, 任磊, 等. 基于强化学习的车间调度问题研究简述[J]. 系统仿真学报, 2021, 33(12): 2782-2791.
DOI
|
|
WANG X H, ZHANG L, REN L, et al. Brief review on applying reinforcement learning to job shop scheduling problems[J]. Journal of System Simulation, 2021, 33(12): 2782-2791 (in Chinese).
DOI
|
[2] |
潘如媛. 深度强化学习求解作业调度问题方法研究[D]. 北京: 北京交通大学, 2020.
|
|
PAN R Y. Research on deep reinforcement learning methods for solving flowshop scheduling problem[D]. Beijing: Beijing Jiaotong University, 2020 (in Chinese).
|
[3] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI
PMID
|
[4] |
HAUPT R. A survey of priority rule-based scheduling[J]. Operations-Research-Spektrum, 1989, 11(1): 3-16.
|
[5] |
HOLLAND J H. Adaptation in natural and artificial systems[EB/OL]. [2025-01-06]. https://www.researchgate.net/publication/242356870_Adaption_In_Natural_And_Artifical_Systems.
|
[6] |
KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
DOI
PMID
|
[7] |
SIVARAM M, KRISHNAN B, MOHAMMED A S, et al. Exploiting the local optima in genetic algorithm using Tabu search[J]. Indian Journal of Science and Technology, 2019, 12(1): 1-13.
|
[8] |
ZHANG C, SONG W, CAO Z G, et al. Learning to dispatch for job shop scheduling via deep reinforcement learning[C]// The 34th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020:1621-1632.
|
[9] |
ZHANG C, CAO Z G, SONG W, et al. Deep reinforcement learning guided improvement heuristic for job shop scheduling[EB/OL]. [2025-01-16]. https://dblp.org/db/conf/iclr/iclr2024.html#ZhangCSW024.
|
[10] |
ZHANG C, CAO Z G, WU Y X, et al. Learning topological representations with bidirectional graph attention network for solving job shop scheduling problem[EB/OL]. (2025-01-03) [2025-01-16]. https://arxiv.org/pdf/2402.17606.
|
[11] |
SUN Z Q, YANG Y M. DIFUSCO: graph-based diffusion solvers for combinatorial optimization[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 164.
|
[12] |
LI Y, GUO J P, WANG R Z, et al. T2T: from distribution learning in training to gradient search in testing for combinatorial optimization[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 2176.
|
[13] |
YU K X, ZHAO H, HUANG Y H, et al. DISCO: efficient diffusion solver for large-scale combinatorial optimization problems[EB/OL]. (2024-06-28) [2025-01-16]. https://arxiv.org/pdf/2406.19705.
|
[14] |
HU S M, LIANG D, YANG G Y, et al. Jittor: a novel deep learning framework with meta-operators and unified graph execution[J]. Science China Information Sciences, 2020, 63(12): 222103.
|
[15] |
BALAS E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm[J]. Operations Research, 1969, 17(6): 941-957.
|
[16] |
XU K L, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2018-10-01)[2025-01-16]. https://arxiv.org/pdf/1810.00826.
|
[17] |
PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377.
|
[18] |
PARK J, BAKHTIYAR S, PARK J,. ScheduleNet: learn to solve multi-agent scheduling problems with reinforcement learning[EB/OL]. (2021-06-06) [2025-01-16]. https://arxiv.org/pdf/2106.03051.
|
[19] |
GRAIKOS A, MALKIN N, JOJIC N, et al. Diffusion models as plug-and-play priors[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 1070.
|
[20] |
PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. New York: Dover Publications, 1998: 1-25.
|
[21] |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 574.
|
[22] |
HUANG Y H, QIN Z, LIU X W, et al. Decoupled diffusion models with explicit transition probability[EB/OL]. (2023-06-23) [2025-01-16]. https://arxiv.org/pdf/2306.13720v2.
|
[23] |
BRESSON X, LAURENT T. An experimental study of neural networks for variable graphs[EB/OL]. [2025-01-16]. https://dblp.org/db/conf/iclr/iclr2018w.html#Bresson018.
|
[24] |
TAILLARD E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research, 1993, 64(2): 278-285.
|
[25] |
PERRON L, FURNON V, LE MOLGAT C. Or-tools, 2019[EB/OL]. [2025-01-16]. https://egon.cheme.cmu.edu/ewo/docs/CP-SAT%20and%20OR-Tools.pdf.
|
[26] |
WANG R Q, WANG G, SUN J, et al. Flexible job shop scheduling via dual attention network-based reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3091-3102.
|
[27] |
ZHANG S S, SHE Q J, LI W H, et al. Learning dual-arm object rearrangement for Cartesian robots[C]// 2024 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2024: 7440-7446.
|
[28] |
王鹏飞, 陶体伟, 焦点, 等. 融合多智能体与超图的复杂动态系统建模方法探索[J]. 图学学报, 2023, 44(3): 599-608.
DOI
|
|
WANG P F, TAO T W, JIAO D, et al. Exploration on the modeling method of complex dynamic system integrating multi-agent and hypergraph[J]. Journal of Graphics, 2023, 44(3): 599-608 (in Chinese).
|
[29] |
FU Z H, QIU K B, ZHA H Y. Generalize a small pre-trained model to arbitrarily large TSP instances[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 7474-7482.
|
[30] |
罗亚波, 余晗琳. 求解包含复杂关联约束的JSSP的二级嵌套混合算法[J]. 图学学报, 2020, 41(1): 116-124.
DOI
|
|
LUO Y B, YU H L. Two level nested hybrid algorithm for solving JSSP with complex associated constraints[J]. Journal of Graphics, 2020, 41(1): 116-124 (in Chinese).
|
[31] |
YE H R, WANG J R, LIANG H L, et al. GLOP: learning global partition and local construction for solving large-scale routing problems in real-time[C]// The 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2024: 20284-20292.
|
[32] |
刘晓平, 杜琳, 石慧. 基于Q学习的任务调度问题的改进研究[J]. 图学学报, 2012, 33(3): 11-16.
|
|
LIU X P, DU L, SHI H. Improvement of task scheduling based on Q-learning[J]. Journal of Graphics, 2012, 33(3): 11-16 (in Chinese).
|