图学学报
• 几何与应用 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: :利用二次曲线上点和直线的对应以及利用二次曲线光流对二次曲线进行解释,需要寻求多元方程组的最优解,计算过程较为复杂。将空间二次曲线表示为一个空间二次曲面和一个平面的交线,提出了一对对应二次曲线存在两个独立的多项式条件;利用两个二次曲面的基曲线推导出二次曲线重建的两个对应条件,在此基础上,给出了空间二次曲线射影重建的计算方法和计算步骤。实验验证表明该算法实用和可靠。
关键词: 计算机应用, 空间二次曲线, 基曲线, 二次曲面
Abstract: The interpretation of conic by use of points and lines correspondence on the conic or use of the conic optical flows is more complicated, because it must find the optimum solution of multivariant equations. The space conic is represented as the complete intersection of a quadric surface and a plane, and two independent polynomial conditions for a corresponding pair of conics are presented in this paper. The polynomial conditions are inferred by use of the base curve. On the basis of study, the computational methods and the computational procedure of the projective reconstruction of a space conic are derived. The results of example show that the algorithms are more utility and reliable than traditional algorithms.
Key words: computer application, space conic, base curve, quadric surface
张政武. 空间二次曲线射影重建计算方法研究[J]. 图学学报.
ZHANG Zheng-wu. Study of the Computational Methods for the Space Conic Projective Reconstruction[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2010/V31/I3/122