欢迎访问《图学学报》 分享到:

图学学报

• 几何设计与计算 • 上一篇    下一篇

带两个形状参数的四次Bézier 曲线的扩展

  

  • 出版日期:2013-02-27 发布日期:2015-06-10

Extension of quartic Bézier curve with two shape parameters

  • Online:2013-02-27 Published:2015-06-10

摘要: 给出了两组带两个形状参数λ , μ 的六次多项式基函数,它们是四次
Bernstein 基函数的扩展。分析了这两组基函数的性质,基于这两组基分别定义了带形状参数
的两类多项式曲线,两类曲线具有与四次Bézier 曲线类似的性质,且在控制顶点不变的情
况下,可通过改变形状参数的值实现对曲线形状的调整。参数λ, μ 具有明显的几何意义。当
λ =μ = 0 时,均退化为四次Bézier 曲线。实例表明,论文所采用的方法控制灵活,方便有效。

关键词: 曲线设计, 四次Bé, zier 曲线, 形状参数

Abstract: Two classes of six degree polynomial basis functions with two shape control
parameters λ and μ are presented. They are extensions of quartic Bernstein basis functions.
Properties of these two bases are analyzed and the corresponding polynomial curves with two
parameters λ and μ are defined accordingly. These curves not only inherit the outstanding
properties of quartic Bézier curve, but also can be adjusted in shape by changing the value of λ
and μ without the changing of control points. The parameters have obvious geometric meaning.
When λ =μ =0, the curve degenerates to four degree Bézier curve. Experiments show that the
method given in this paper is intuitive, effective and easy to control.

Key words: curve design, quartic Bézier curve, shape parameters