图学学报
• 几何设计与计算 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 根据二项式的展开系数,设计出带形状参数的正系数矩阵,并对Bernstein基函数进 行具有明显几何意义的构造,推导出同阶带参的A-Bernstein基函数,该基函数具有Bernstein基函 数类似的性质。在此基础上推导出对应的A-Bézier曲线,分析了其不但具有Bézier曲线类似的性质, 而且在原始控制点不变的情况下,可以通过修改形状参数来对曲线进行调整。此外,还进一步说 明了可以通过对正系数矩阵的调整,实现对曲线的调整。通过举例,展现出该方法灵活有效。
关键词: 曲线设计, A-Bé, zier曲线, 正系数矩阵, 形状参数, A-Bernstein基函数
Abstract: Based on the binomial coefficient, a matrix with shape parameters is designed. And then it is used for constructing a new type of basis function called A-Bernstein basis function. It has the same degree with the Bernstein basis function and shares several same properties. According to the A-Bernstein basis function, a corresponding curve named A-Bézier curve is derived. It not only shares the same properties with a Bézier curve, but also can be adjusted in shape by modifying the shape parameter without the changing of original control points. Furthermore, the modification of the matrix is illustrated. It can be used for modifying the A-Bézier curve. Examples show this method is intuitive and effective.
Key words: curve design, A-Bézier curve, positive coefficient matrix, shape parameter, A-Bernstein basis function
郭大勇, 成佳颐. 基于二项式系数设计矩阵的Bézier曲线扩展[J]. 图学学报.
Guo Dayong, Cheng Jiayi. Extension of Bézier Curves Based on the Design of Matrix Using Binomial Coefficient[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2014/V35/I4/511