图学学报
• 几何设计与计算 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 考虑有理二次Bézier 形式的相互共轭的双曲线的控制顶点之间的关系,给定表示 一段双曲线的标准型有理二次Bézier 曲线,目标是求出它的共轭双曲线上相应段的控制顶点。 首先给出共轭双曲线段的自然定义;接着通过参数变换,将有理二次Bézier 形式和一般参数形 式进行转换,并把这种转换对应到矩阵,以给出所求控制顶点的显式表达;最后,给出表达式 的几何意义,即共轭双曲线段的控制顶点可由原双曲线的控制顶点通过两次线性插值得到。
关键词: 曲线造型, 有理二次Bé, zier 曲线, 双曲线, 共轭双曲线, 线性插值
Abstract: Consider the relationship between the control points of the conjugate hyperbolas presented as rational quadratic Bézier forms. Given a rational quadratic Bézier curve with standard form presenting a hyperbolic segment, the target is to calculate the control points of the corresponding segment on its conjugate hyperbola. Firstly, the natural definition of the segment of conjugate hyperbola is given. Secondly, parameter conversion is used to transform the hyperbola between the rational quadratic Bézier form and a general parametric form. The transformations correspond to matrices. Thus the explicit expressions of the control points of the conjugate segments are obtained. Finally, the geometric meanings of the expressions are shown. Each control point of the conjugate hyperbola segments can be given by two linear interpolations of the control points of the original hyperbola segment.
Key words: curve modeling, rational quadratic Bézier curve, hyperbola, conjugate hyperbola, linear interpolation
沈莞蔷, 汪国昭. 有理二次Bézier 形式共轭双曲线段的几何计算[J]. 图学学报.
Shen Wanqiang, Wang Guozhao. Geometric Calculation of Conjugate Hyperbola Segment Presented as Rational Quadratic Bézier Form[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2015/V36/I2/172