图学学报
• 第五届中国图学大会专栏 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 提出一种新颖的三维耳廓识别方法,首先基于PCA 和SVD 分解对三维耳廓点云模 型进行归一化预处理,以统一数据库中所有耳廓点云模型的位置与姿态;然后基于Iannarelli 分 类系统提取三维耳廓的4 个局部特征区域,并利用Sparse ICP 算法对局部特征区域进行匹配;最 后根据局部特征区域中对应点间的距离判断耳廓之间的差异测度,实现耳廓形状识别。实验证明, 本文算法与其他算法相比具有较高的识别精度和识别效率。
关键词: 耳廓识别, PCA, Iannarelli, 局部特征, Sparse ICP
Abstract: A novel 3D ear recognition method is proposed in this paper. Firstly, using the PCA and SVD algorithm to normalize 3D ear point clouds model, and adjust the position and posture of all ear point cloud models in the database. Then, based on the Iannarelli system, we extract four local feature regions of 3D ear model, and match them with Sparse ICP algorithm. Finally we match 3D ear models according to the distance between their corresponding points. The experiments show that our algorithm has higher recognition accuracy and efficiency compared with other algorithms.
Key words: ear recognition, PCA, Iannarelli, local feature, Sparse ICP
王 森, 王 璐, 洪靖惠, 李思慧, 孙晓鹏. 基于Sparse ICP 的三维点云耳廓识别[J]. 图学学报, DOI: 10.11996/JG.j.2095-302X.2015060862.
Wang Sen, Wang Lu, Hong Jinghui, Li Sihui, Sun Xiaopeng. 3D Ear Point Clouds Recognition Using Sparse ICP[J]. Journal of Graphics, DOI: 10.11996/JG.j.2095-302X.2015060862.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/10.11996/JG.j.2095-302X.2015060862
http://www.txxb.com.cn/CN/Y2015/V36/I6/862