欢迎访问《图学学报》 分享到:

图学学报 ›› 2021, Vol. 42 ›› Issue (4): 556-562.DOI: 10.11996/JG.j.2095-302X.2021040556

• 图像处理与计算机视觉 • 上一篇    下一篇

基于稠密残差网络的图像超分辨率重建算法

  

  1. 北京工业大学信息学部,北京 100124
  • 出版日期:2021-08-31 发布日期:2021-08-05

Image super-resolution reconstruction algorithm based on dense residual network

  1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Online:2021-08-31 Published:2021-08-05

摘要: 图像超分辨率重建作为一种廉价方便的图像增强手段,在视频监控、医学成像、卫星遥感等领
域有着重要的研究意义。为此结合深度学习在图像重建的性能优势,提出了一种基于增强稠密残差网络(ERDN)
的图像超分辨率重建模型。首先使用多卷积核的稠密残差神经网络模块,提取图像的细节信息;然后通过跳跃
连接和特征复用模块对多层图像信息进行筛选重组,使网络模型对不同深度的图像信息综合利用;最后对重建
模型参数向量进行约束,通过对长度与方向的解耦运算使模型能够在更大学习率条件下收敛,提升模型训练速
度。在多个国际公开数据集上进行实验验证,实验结果表明,该方法获得了更好的主观视觉评价和客观量化评
价,例如对于四倍重建任务,ERDN 输出图像的峰值信噪比(PSNR)指标在 Urban100 数据集上比稠密残差网络
(RDN)提高了 0.24 dB,且模型参数量减少约 50%,可适用于各种场景图像的超分辨率重建。

关键词: 图像处理, 深度学习, 超分辨率重建, 卷积神经网络, 跳跃连接

Abstract: Image super-resolution is a cheap and convenient method for image enhancement, which is of great
significance in the research on video surveillance, medical imaging, satellite remote sensing, and other fields. In this
paper, combined with the performance advantages of deep learning in image reconstruction, an enhanced residual
dense network (ERDN) was proposed. Firstly, the enhanced residual dense block with multiple convolution kernels
was employed to extract the details of the image. Then the multi-layer image information was filtered and reorganized
through the skip connection and feature multiplexing modules, so that the network model could make comprehensive
use of image information at different depths. Finally, the parameter vectors of the reconstructed model were
constrained, and the decoupling operation of length and orientation enabled the model to converge at a larger learning
rate to improve the model training speed. Experimental validation on multiple international public datasets shows that
the method achieves better subjective visual evaluation and objective quantitative evaluation. For example, for the
quadruple reconstruction task, the peak signal-to-noise ratio (PSNR) metric of the ERDN output image was improved
by 0.24 dB over the dense residual network (RDN) on the Urban100 dataset, and the number of model parameters was
reduced by about 50%, which can be applicable to super-resolution reconstruction of various scene images.

Key words: image processing, deep learning, super-resolution reconstruction, convolution neural network, skip
connection

中图分类号: