欢迎访问《图学学报》 分享到:

图学学报 ›› 2021, Vol. 42 ›› Issue (5): 762-766.DOI: 10.11996/JG.j.2095-302X.2021050762

• 图像处理与计算机视觉 • 上一篇    下一篇

快速仿射非局部均值图像去噪

  

  1. 扬州大学信息工程学院,江苏 扬州 225127
  • 出版日期:2021-10-31 发布日期:2021-11-03
  • 基金资助:
    国家自然科学基金项目(61801417)

Fast affine non-local means image denosing

  1. School of Information Engineering, Yangzhou University, Yangzhou Jiangsu 225127, China
  • Online:2021-10-31 Published:2021-11-03
  • Supported by:
    non-local; structure-tensor; affine-invariant; convolution; similarity-measure; Fast-Fourier

摘要: 针对仿射非局部均值(ANLM)算法对图像去噪过程中出现用时过长的问题,提出了一种快速仿射非 局部均值去噪(F-ANLM)算法。通过对算法的研究和用时分析得知,仿射变换和关于仿射不变相似性度量的计算这 2 个模块占时最多,因此从这 2 个部分入手提出优化策略。算法首先使用仿射协变结构张量其特征向量的夹角代替 尺寸不变特征变换(SIFT)算子的主方向,简化了仿射变换过程;然后将 ANLM 方法中的仿射不变相似性度量改写为 离散卷积的形式,使用快速傅里叶变换减少卷积的运算量,加速仿射协变特征区域之间相似性度量的计算。实验证 明,F-ANLM 方法简化了仿射变换和仿射不变相似性度量的计算,与原来 ANLM 算法相比,速度得到很大的提升。

关键词: 非局部, 结构张量, 仿射不变, 卷积, 相似性度量, 快速傅里叶

Abstract: To address the problem of high time consumption of the affine non-local mean (ANLM) algorithm in the denoising process, a fast affine non-local mean denoising (F-ANLM) algorithm was proposed. Through time analysis of the affine non-local mean algorithm, it was known that the two modules, the affine transformation and the calculation of the affine invariant similarity measure, were the most time-consuming. Therefore, the optimization strategy was proposed from these tworegards. The algorithm first employed the included angle of the feature vector of the affine covariant structure tensor instead of the main direction of the SIFT operator, and then rewrote the affine invariant similarity measure in the ANLM method into the form of discrete convolution. In addition, the Fast Fourier Transform was adopted to reduce the amount of convolution operation and accelerate the calculation of similarity measures between affine covariant feature regions. Experiments show that the F-ANLM algorithm can simplify the calculation of affine transformation and affine invariant similarity measures, and greatly increase the speed compared with the original ANLM algorithm. 

Key words: non-local, structure-tensor, affine-invariant, convolution, similarity-measure, Fast-Fourier

中图分类号: