欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1130-1139.DOI: 10.11996/JG.j.2095-302X.2023061130

• 图像处理与计算机视觉 • 上一篇    下一篇

细节增强的多曝光图像融合方法

夏晓华1,2(), 刘希恒1, 岳鹏举1, 邹易清3, 蒋立军3   

  1. 1.长安大学工程机械学院,陕西 西安 710064
    2.哈尔滨工业大学机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150001
    3.柳州欧维姆机械股份有限公司,广西 柳州 545006
  • 收稿日期:2023-05-29 接受日期:2023-09-08 出版日期:2023-12-31 发布日期:2023-12-17
  • 作者简介:第一联系人:

    夏晓华(1987-),男,副教授,博士。主要研究方向为机器视觉与光机电一体化。E-mail:xhxia@chd.edu.cn

  • 基金资助:
    国家自然科学基金项目(61901056);中国博士后科学基金项目(2020M683631XB);机器人技术与系统国家重点实验室开放基金项目(SKLRS-2021-KF-10)

Detail-enhanced multi-exposure image fusion method

XIA Xiao-hua1,2(), LIU Xi-heng1, YUE Peng-ju1, ZOU Yi-qing3, JIANG Li-jun3   

  1. 1. School of Construction Machinery, Chang'an University, Xi'an Shaanxi 710064, China
    2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin Heilongjiang 150001, China
    3. Liuzhou OVM Machinery Co., Ltd. Liuzhou Guangxi 545006, China
  • Received:2023-05-29 Accepted:2023-09-08 Online:2023-12-31 Published:2023-12-17
  • About author:First author contact:

    XIA Xiao-hua (1987-), associate professor, Ph.D. His main research interests cover machine vision and opto-mechatronics.
    E-mail:xhxia@chd.edu.cn

  • Supported by:
    National Natural Science Foundation of China(61901056);China Postdoctoral Science Foundation(2020M683631XB);State Key Laboratory of Robotics and System Open Foundation(SKLRS-2021-KF-10)

摘要:

针对基于权重图的多曝光图像融合方法存在序列图像中偏亮与偏暗区域获得的权重较低,导致融合图像高亮与黑暗区域细节丢失的问题,提出了一种细节增强的多曝光图像融合方法。将序列图像与基于权重图的融合图像进行小波分解,提取融合图像的低频分量和边缘区域高频分量并与序列图像非边缘区域高频分量融合,经小波逆变换得到细节增强的融合图像。实验选取9组经典多曝光图像序列,分别从主观比较和客观评价2个方面与9种多曝光图像融合算法进行对比。结果表明:该方法将空间域与频率域两类图像融合方法相结合,能有效解决融合图像高亮与黑暗区域细节丢失的问题,避免频率域图像融合方法易出现振铃现象的问题,融合图像真实自然、颜色饱满,使用本文方法得到融合图像的图像信息熵均值与图像梯度均值分别为7.655 5和7.027 3,在10种多曝光图像融合算法中分别排名第一和第二。综合主观和客观评价结果,提出的方法优于9种对比方法。

关键词: 多曝光图像, 图像融合, 细节增强, 小波变换, 高动态范围

Abstract:

A detail-enhanced multi-exposure image fusion method was proposed to address the problem of low weights obtained in the light and dark regions in the sequence image, resulting in the loss of details in the bright and dark regions of the fused image. Wavelet decomposition was conducted on the sequence image and the fused image based on the weight map. This process involved extracting the low-frequency components from the fused image and the high-frequency components from the edge regions, and they were fused with the high-frequency components from the non-edge regions of the sequence image. Finally, the detail-enhanced fused image was obtained through wavelet inverse transform. Experimentally, nine sets of classical multi-exposure image sequences were selected for comparison with nine multi-exposure image fusion algorithms in terms of subjective comparison and objective evaluation, respectively. The results demonstrated that the proposed method, which combined the spatial and frequency domain image fusion methods, could effectively solve the problem of detail loss in the bright and dark areas of fused images, while avoiding the problem of ringing phenomenon often encountered in frequency domain image fusion methods. The fused images were realistic, natural, and exhibited vibrant colors. The mean image information entropy value and the mean image gradient value of the fused images obtained through the proposed method were 7.655 5 and 7.027 3, respectively, ranking first and second among the ten multi-exposure image fusion algorithms. Considering both subjective and objective evaluation results, the proposed method outperformed the nine comparative methods.

Key words: multi-exposure images, image fusion, detail enhancement, wavelet transform, high dynamic range

中图分类号: